login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054357
Number of unlabeled 2-ary cacti having n polygons. Also number of bicolored plane trees with n edges.
18
1, 1, 2, 3, 6, 10, 28, 63, 190, 546, 1708, 5346, 17428, 57148, 191280, 646363, 2210670, 7626166, 26538292, 93013854, 328215300, 1165060668, 4158330416, 14915635378, 53746119972, 194477856100, 706437056648, 2575316704200, 9419571138368
OFFSET
0,3
COMMENTS
a(n) = the number of inequivalent non-crossing partitions of n points (equally spaced) on a circle, under rotations of the circle. This may be considered the number of non-crossing partitions of n unlabeled points on a circle, so this sequence has the same relation to the Catalan numbers (A000108) as the number of partitions of an integer (A000041) has to the Bell numbers (A000110). - Len Smiley, Sep 06 2005
LINKS
Miklos Bona, Michel Bousquet, Gilbert Labelle, and Pierre Leroux, Enumeration of m-ary cacti, Advances in Applied Mathematics, 24 (2000), 22-56.
FORMULA
a(n) = (1/n)*(Sum_{d|n} phi(n/d)*binomial(2*d, d)) - binomial(2*n, n)/(n+1) for n > 0. - Andrew Howroyd, May 02 2018
a(n) ~ 2^(2*n) / (sqrt(Pi) * n^(5/2)). - Vaclav Kotesovec, Jul 17 2017
MATHEMATICA
a[n_] := If[n == 0, 1, (Binomial[2*n, n]/(n + 1) + DivisorSum[n, Binomial[2*#, #]*EulerPhi[n/#]*Boole[# < n] & ])/n]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jul 17 2017 *)
PROG
(PARI) a(n)=if(n==0, 1, (binomial(2*n, n)/(n + 1) + sumdiv(n, d, binomial(2*d, d)*eulerphi(n/d)*(d<n)))/n); \\ Indranil Ghosh, Jul 17 2017
(PARI) a(n) = if(n==0, 1, sumdiv(n, d, eulerphi(n/d)*binomial(2*d, d))/n - binomial(2*n, n)/(n+1)) \\ Andrew Howroyd, May 02 2018
(Python)
from sympy import binomial, divisors, totient
def a(n): return 1 if n==0 else (binomial(2*n, n)//(n + 1) + sum(binomial(2*d, d)*totient(n//d)*(d<n) for d in divisors(n)))//n
print([a(n) for n in range(31)]) # Indranil Ghosh, Jul 17 2017
CROSSREFS
Column k=2 of A303912.
Row sums of A209805.
Sequence in context: A192440 A327711 A274964 * A056606 A371505 A186408
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Len Smiley, Sep 06 2005
More terms from Vladeta Jovovic, Oct 04 2007
STATUS
approved