login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054354 First differences of Kolakoski sequence A000002. 6
1, 0, -1, 0, 1, -1, 1, 0, -1, 1, 0, -1, 0, 1, -1, 0, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 0, 1, -1, 0, 1, -1, 1, 0, -1, 1, 0, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 0, 1, 0, -1, 1, 0, -1, 0, 1, -1, 1, 0, -1, 1, 0, -1, 0, 1, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, 0, -1, 1, 0, -1, 0, 1, -1, 1, 0, -1, 1, 0, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The Kolakoski sequence has only 1's and 2's, and is cube free. Thus, for all n>=1, a(n) is in {-1, 0, 1}, a(n+1) <> a(n), and if a(n) = 0, a(n+1) = -a(n-1), while if a(n) > 0, either a(n+1) = 0 and a(n+2) = -a(n) or a(n+1) = -a(n). A further consequence is that the maximum gap between equal values is 4 : for all n, there is an integer k, 1<k<=4 such that a(n+k)=a(n). - Jean-Christophe Hervé, Oct 05 2014

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

FORMULA

Abs(a(n))=(A000002(n)+A000002(n+1)) mod 2 - Benoit Cloitre, Nov 17 2003

MATHEMATICA

a2 = {1, 2, 2}; Do[ a2 = Join[a2, {1 + Mod[n - 1, 2]}], {n, 3, 70}, {i, 1, a2[[n]]}]; Differences[a2] (* Jean-François Alcover, Jun 18 2013 *)

PROG

(Haskell)

a054354 n = a054354_list !! (n-1)

a054354_list = zipWith (-) (tail a000002_list) a000002_list

-- Reinhard Zumkeller, Aug 03 2013

CROSSREFS

Cf. A000002, A054353.

Sequence in context: A123110 A004593 A094934 * A156728 A074332 A152065

Adjacent sequences:  A054351 A054352 A054353 * A054355 A054356 A054357

KEYWORD

sign,changed

AUTHOR

N. J. A. Sloane, May 07 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 24 19:48 EDT 2014. Contains 248516 sequences.