This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054318 a(n)-th star number (A003154) is a square. 5
 1, 5, 45, 441, 4361, 43165, 427285, 4229681, 41869521, 414465525, 4102785725, 40613391721, 402031131481, 3979697923085, 39394948099365, 389969783070561, 3860302882606241, 38213059042991845, 378270287547312205 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A two-way infinite sequence which is palindromic. Also indices of centered hexagonal numbers (A003215) which are also centered square numbers (A001844). - Colin Barker, Jan 02 2015 Also positive integers y in the solutions to 4*x^2 - 6*y^2 - 4*x + 6*y = 0. - Colin Barker, Jan 02 2015 REFERENCES Giovanni Lucca, Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences, Forum Geometricorum, Volume 16 (2016) 419-427; http://forumgeom.fau.edu/FG2016volume16/FG2016volume16.pdf#page=423 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (11,-11,1). FORMULA a(n) = 11*(a(n-1) - a(n-2)) + a(n-3). a(n) = 1/2 + (3 - sqrt(6))/12*(5 + 2*sqrt(6))^n + (3 + sqrt(6))/12*(5 - 2*sqrt(6))^n. G.f.: x(1-6x+x^2)/((1-x)(1-10x+x^2)). 12a(n)a(n-1)+4 = (a(n)+a(n-1)+2)^2. a(n) = a(1-n) = 10a(n-1)-a(n-2)-4 = 12a(n-1)^2/(a(n-1)+a(n-2))-a(n-1) =(a(n-1)+4)a(n-1)/a(n-2). - Michael Somos, Mar 18 2003 a(n+1) = 1 + 1/2*sum {k = 1..n} 8^k*binomial(n+k,2*k). a(n+1) = R(n,4), where R(n,x) is the n-th row polynomial of A211955. a(n+1) = 1/u*T(n,u)*T(n+1,u) with u = sqrt(3) and T(n,x) the Chebyshev polynomial of the first kind. Sum {k = 0..inf} 1/a(k) = sqrt(3/2). - Peter Bala, May 01 2012 A003154(a(n)) = A006061(n). - Zak Seidov, Oct 22 2012 a(n) = (4*a(n-1) + a(n-1)^2) / a(n-2), n >= 3. - Seiichi Manyama, Aug 11 2016 EXAMPLE a(2) = 5 because the 5th Star number (A003154) 121=11^2 is the 2nd that is a square. MATHEMATICA CoefficientList[Series[x (1 - 6 x + x^2)/((1 - x) (1 - 10 x + x^2)), {x, 0, 19}], x] (* Michael De Vlieger, Aug 11 2016 *) LinearRecurrence[{11, -11, 1}, {1, 5, 45}, 30] (* Harvey P. Dale, Nov 05 2016 *) PROG (PARI) a(n)=if(n<1, a(1-n), 1/2+subst(poltchebi(n)+poltchebi(n-1), x, 5)/12) (PARI) Vec(x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2)) + O(x^100)) \\ Colin Barker, Jan 02 2015 CROSSREFS A031138 is 3*a(n)-2. Cf. A003154, A006061, A182432, A211955. Quintisection of column k=2 of A233427. Cf. A001844, A003215, A253475. Sequence in context: A005979 A165225 A121272 * A093140 A137233 A001449 Adjacent sequences:  A054315 A054316 A054317 * A054319 A054320 A054321 KEYWORD easy,nonn,changed AUTHOR Ignacio Larrosa CaĆ±estro, Feb 27 2000 EXTENSIONS More terms from James A. Sellers, Mar 01 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.