

A211955


Triangle of coefficients of a polynomial sequence related to the MorganVoyce polynomials A085478.


9



1, 1, 1, 1, 3, 2, 1, 6, 10, 4, 1, 10, 30, 28, 8, 1, 15, 70, 112, 72, 16, 1, 21, 140, 336, 360, 176, 32, 1, 28, 252, 840, 1320, 1056, 416, 64, 1, 36, 420, 1848, 3960, 4576, 2912, 960, 128, 1, 45, 660, 3696, 10296, 16016, 14560, 7680, 2176, 256
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

Let b(n,x) = sum {k = 0..n} binomial(n+k,2*k)*x^k denote the MorganVoyce polynomials of A085478. This triangle lists the coefficients (in ascending powers of x) of the related polynomial sequence R(n,x) := 1/2*b(n,2*x) + 1/2. Several sequences already in the database are of the form (R(n,x))n>=0 for a fixed value of x. These include A101265 (x = 1), A011900 (x = 2), A182432 (x = 3), A054318 (x = 4) as well as signed versions of A133872 (x = 1), A109613(x = 2), A146983 (x = 3) and A084159(x = 4).
The polynomials R(n,x) factorize in the ring Z[x] as R(n,x) = P(n,x)*P(n+1,x) for n >= 1: explicitly, P(2*n,x) = 1/2*(b(2*n,2*x) + 1)/b(n,2*x) and P(2*n+1,x) = b(n,2*x). The coefficients of P(n,x) occur in several tables in the database, although without the connection to the MorganVoyce polynomials being noted  see A211956 for more details. In terms of T(n,x), the Chebyshev polynomials of the first kind, we have P(2*n,x) = T(2*n,u) and P(2*n+1,x) = 1/u*T(2*n+1,u), where u = sqrt((x+2)/2). Hence R(n,x) = 1/u*T(n,u)*T(n+1,u).


LINKS

Table of n, a(n) for n=0..54.
Eric Weisstein's World of Mathematics, MorganVoyce polynomials


FORMULA

T(n,0) = 1; T(n,k) = 2^(k1)*binomial(n+k,2*k) for k > 0.
O.g.f. for column k (except column 0): 2^(k1)*x^k/(1x)^(2*k+1). O.g.f.: (1t*(x+2)+t^2)/((1t)*(12*t(x+1)+t^2)) = 1 + (1+x)*t + (1+3*x+2*x^2)*t^2 + ....
Removing the first column from the triangle produces the Riordan array [x/(1x)^3, 2*x/(1x)^2].
The row polynomials R(n,x) := 1/2*b(n,2*x) + 1/2 = 1 + x*sum {k = 1..n} binomial(n+k,2*k)*(2*x)^(k1).
Recurrence equation: R(n,x) = 2*(1+x)*R(n1,x)  R(n2,x)  x with initial conditions R(0,x) = 1, R(1,x) = 1+x. Another recurrence is R(n,x)*R(n2,x) = R(n1,x)*(R(n1,x) + x).
With P(n,x) as defined in the Comments section we have (x+2)/x  {sum {k = 0..2n} 1/R(k,x)}^2 = 2/(x*P(2*n+1,x)^2); (x+2)/x  {sum {k = 0..2n+1} 1/R(k,x)}^2 = (x+2)/(x*P(2*n+2,x)^2); consequently sum {k = 0..inf} 1/R(k,x) = sqrt((x+2)/x) for either x > 0 or x <= 2.
Row sums R(n,1) = A101265(n+1); Alt. row sums R(n,1) = A133872(n+1);
R(n,2) = A011900(n); R(n,2) = (1)^n*A109613(n); R(n,3) = A182432;
R(n,3) = (1)^n*A146983(n); R(n,4) = A054318(n+1); R(n,4) = (1)^n*A084159(n).


EXAMPLE

Triangle begins
.n\k...0....1....2....3....4....5....6
= = = = = = = = = = = = = = = = = = = =
..0....1
..1....1....1
..2....1....3....2
..3....1....6...10....4
..4....1...10...30...28....8
..5....1...15...70..112...72...16
..6....1...21..140..336..360..176...32


CROSSREFS

Cf. A011900, A084159, A085478, A101265 (row sums), A109613, A112373, A123519, A133872 (alt row sums), A146983, A182432, A204021, A208513, A211956, A211957.
Sequence in context: A181897 A212207 A111049 * A088617 A190909 A144250
Adjacent sequences: A211952 A211953 A211954 * A211956 A211957 A211958


KEYWORD

nonn,easy,tabl


AUTHOR

Peter Bala, Apr 30 2012


STATUS

approved



