

A053451


Multiplicative order of 8 mod 2n+1.


15



1, 2, 4, 1, 2, 10, 4, 4, 8, 6, 2, 11, 20, 6, 28, 5, 10, 4, 12, 4, 20, 14, 4, 23, 7, 8, 52, 20, 6, 58, 20, 2, 4, 22, 22, 35, 3, 20, 10, 13, 18, 82, 8, 28, 11, 4, 10, 12, 16, 10, 100, 17, 4, 106, 12, 12, 28, 44, 4, 8, 110, 20, 100, 7, 14, 130, 6, 12, 68, 46, 46, 20, 28, 14, 148, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

In the case n=2 and any other case where a(n)=A000010(2n+1), the multiplicative group of units modulo 2n+1 is cyclic and thus 8 (and any other unit) is a generator. These moduli are A167796, so this occurs whenever 2n+1 (caution: not n) is a member of A167796.  Kellen Myers, Feb 06 2015


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Multiplicative Order


EXAMPLE

The third term a(2) is 4 because 4 is the smallest integer such that 8^4 is congruent to 1 modulo 2*2+1=5. The orbit of 8 modulo 5 is {3, 4, 2, 1}.  Kellen Myers, Feb 06 2015


MATHEMATICA

Table[MultiplicativeOrder[8, n], {n, 1, 150, 2}] (* Robert G. Wilson v, Apr 05 2011 *)


PROG

(MAGMA) [1] cat [Modorder(8, 2*n+1): n in [1..100]]; // Vincenzo Librandi, Apr 01 2014
(PARI) vector(80, n, n; znorder(Mod(8, 2*n+1))) \\ Michel Marcus, Feb 05 2015
(GAP) List([0..80], n>OrderMod(8, 2*n+1)); # Muniru A Asiru, Feb 26 2019


CROSSREFS

Cf. A070667A070675, A002326, A070676, A053447, A070677, A070681, A070678, A070679, A070682, A070680, A070683.
Sequence in context: A249307 A209581 A050980 * A254076 A257164 A190555
Adjacent sequences: A053448 A053449 A053450 * A053452 A053453 A053454


KEYWORD

nonn


AUTHOR

David W. Wilson


STATUS

approved



