login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257164 Period 5 sequence: repeat [0, 2, 4, 1, 3]. 1
0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Label the vertices of a regular pentagon from 0..4 going clockwise. Then, starting at vertex "0", a(n) gives the order in which the vertices must be connected to draw a clockwise inscribed, 5-pointed star that remains unbroken during construction.

LINKS

Table of n, a(n) for n=0..66.

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).

FORMULA

a(n) = (2n mod 5) = A010874(A005843(n)).

G.f.: x*(2+4*x+x^2+3*x^3)/(1-x^5).

Recurrence: a(n) = a(n-5).

a(n) = a(a(a(a(a(n))))).

a(-n) = A010874(3n) = a(a(a(n))).

Bisections: a(2n) = A010874(-n) = a(a(n)); a(2n+1) = A010874(2-n).

Trisections: a(3n) = A010874(n) = a(a(a(a(n)))); a(3n+1) = A010874(n+2); a(3n+2) = A010874(n-1).

EXAMPLE

0 -> 2 -> 4 -> 1 -> 3 -> ..repeat

MAPLE

A257164:=n->(2*n mod 5): seq(A257164(n), n=0..100);

MATHEMATICA

Mod[2 Range[0, 100], 5] (* or *)

CoefficientList[Series[x (2 + 4 x + x^2 + 3 x^3)/(1 - x^5), {x, 0, 100}], x]

LinearRecurrence[{0, 0, 0, 0, 1}, {0, 2, 4, 1, 3}, 105] (* or *)

NestList[# /. {0 -> 2, 1 -> 3, 2 -> 4, 3 -> 0, 4 -> 1} &, {0}, 104] // Flatten (* Robert G. Wilson v, Apr 30 2015 *)

PROG

(MAGMA) [(2*n mod 5) : n in [0..100]];

(PARI) a(n)=2*n%5 \\ Charles R Greathouse IV, Apr 21 2015

CROSSREFS

Cf. A005843.

Bisection of A010874.

Sequence in context: A050980 A053451 A254076 * A190555 A141843 A130266

Adjacent sequences:  A257161 A257162 A257163 * A257165 A257166 A257167

KEYWORD

nonn,easy

AUTHOR

Wesley Ivan Hurt, Apr 16 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 05:43 EDT 2018. Contains 315273 sequences. (Running on oeis4.)