This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257164 Period 5 sequence: repeat [0, 2, 4, 1, 3]. 1
 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Label the vertices of a regular pentagon from 0..4 going clockwise. Then, starting at vertex "0", a(n) gives the order in which the vertices must be connected to draw a clockwise inscribed, 5-pointed star that remains unbroken during construction. LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1). FORMULA a(n) = (2n mod 5) = A010874(A005843(n)). G.f.: x*(2+4*x+x^2+3*x^3)/(1-x^5). Recurrence: a(n) = a(n-5). a(n) = a(a(a(a(a(n))))). a(-n) = A010874(3n) = a(a(a(n))). Bisections: a(2n) = A010874(-n) = a(a(n)); a(2n+1) = A010874(2-n). Trisections: a(3n) = A010874(n) = a(a(a(a(n)))); a(3n+1) = A010874(n+2); a(3n+2) = A010874(n-1). EXAMPLE 0 -> 2 -> 4 -> 1 -> 3 -> ..repeat MAPLE A257164:=n->(2*n mod 5): seq(A257164(n), n=0..100); MATHEMATICA Mod[2 Range[0, 100], 5] (* or *) CoefficientList[Series[x (2 + 4 x + x^2 + 3 x^3)/(1 - x^5), {x, 0, 100}], x] LinearRecurrence[{0, 0, 0, 0, 1}, {0, 2, 4, 1, 3}, 105] (* or *) NestList[# /. {0 -> 2, 1 -> 3, 2 -> 4, 3 -> 0, 4 -> 1} &, {0}, 104] // Flatten (* Robert G. Wilson v, Apr 30 2015 *) PROG (MAGMA) [(2*n mod 5) : n in [0..100]]; (PARI) a(n)=2*n%5 \\ Charles R Greathouse IV, Apr 21 2015 CROSSREFS Cf. A005843. Bisection of A010874. Sequence in context: A050980 A053451 A254076 * A190555 A141843 A130266 Adjacent sequences:  A257161 A257162 A257163 * A257165 A257166 A257167 KEYWORD nonn,easy AUTHOR Wesley Ivan Hurt, Apr 16 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 15:03 EST 2018. Contains 318049 sequences. (Running on oeis4.)