login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A254076 a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>2, a(0)=-1, a(1)=-2, a(2)=-4. 2
-1, -2, -4, 1, 2, 13, 26, 61, 122, 253, 506, 1021, 2042, 4093, 8186, 16381, 32762, 65533, 131066, 262141, 524282, 1048573, 2097146, 4194301, 8388602, 16777213, 33554426, 67108861, 134217722, 268435453, 536870906, 1073741821, 2147483642, 4294967293 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The main diagonal of the difference table is -A000079(n) = -2^n.

a(n) mod 9 is of period 6: repeat 8, 7, 5, 1, 2, 4.

a(n) + a(n+1) = -3, -6, -3, 3, 15, ...; all are multiples of 3.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,1,-2).

FORMULA

a(2n+1) = A141725(n-1), a(2n+2) = 2*a(2n+1).

a(n+1) = 2*a(n) + (period 2: repeat 0, 9), n>0.

a(n) = -A157823(n) - (period 2: repeat 6, 3).

a(n+1) = a(n) - A156067(n).

a(n+2) = a(n) +  3*2^(n-1), n>0.

a(n+4) = a(n) + 15*2^(n-1), n>0.

a(n+6) = a(n) + 63*2^(n-1), n>0.

a(n) = (2^n - 3*(-1)^n - 9)/2 for n>0. - Colin Barker, Jan 30 2015

G.f.: (9*x^3+x^2-1) / ((x-1)*(x+1)*(2*x-1)). - Colin Barker, Jan 30 2015

MATHEMATICA

a[0] = -1; a[n_] := 2^(n-1) + 3*Mod[n, 2] - 6; Table[a[n], {n, 0, 33}] (* Jean-Fran├žois Alcover, Feb 04 2015 *)

PROG

(PARI) Vec((9*x^3+x^2-1)/((x-1)*(x+1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Jan 30 2015

CROSSREFS

Cf. A000079, A010704, A141725, A153130, A156067, A157823.

Sequence in context: A209581 A050980 A053451 * A257164 A190555 A141843

Adjacent sequences:  A254073 A254074 A254075 * A254077 A254078 A254079

KEYWORD

sign,easy

AUTHOR

Paul Curtz, Jan 29 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 15:03 EST 2018. Contains 318049 sequences. (Running on oeis4.)