login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A254076 a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>2, a(0)=-1, a(1)=-2, a(2)=-4. 2
-1, -2, -4, 1, 2, 13, 26, 61, 122, 253, 506, 1021, 2042, 4093, 8186, 16381, 32762, 65533, 131066, 262141, 524282, 1048573, 2097146, 4194301, 8388602, 16777213, 33554426, 67108861, 134217722, 268435453, 536870906, 1073741821, 2147483642, 4294967293 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The main diagonal of the difference table is -A000079(n) = -2^n.

a(n) mod 9 is of period 6: repeat 8, 7, 5, 1, 2, 4.

a(n) + a(n+1) = -3, -6, -3, 3, 15, ...; all are multiples of 3.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,1,-2).

FORMULA

a(2n+1) = A141725(n-1), a(2n+2) = 2*a(2n+1).

a(n+1) = 2*a(n) + (period 2: repeat 0, 9), n>0.

a(n) = -A157823(n) - (period 2: repeat 6, 3).

a(n+1) = a(n) - A156067(n).

a(n+2) = a(n) +  3*2^(n-1), n>0.

a(n+4) = a(n) + 15*2^(n-1), n>0.

a(n+6) = a(n) + 63*2^(n-1), n>0.

a(n) = (2^n - 3*(-1)^n - 9)/2 for n>0. - Colin Barker, Jan 30 2015

G.f.: (9*x^3+x^2-1) / ((x-1)*(x+1)*(2*x-1)). - Colin Barker, Jan 30 2015

MATHEMATICA

a[0] = -1; a[n_] := 2^(n-1) + 3*Mod[n, 2] - 6; Table[a[n], {n, 0, 33}] (* Jean-Fran├žois Alcover, Feb 04 2015 *)

PROG

(PARI) Vec((9*x^3+x^2-1)/((x-1)*(x+1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Jan 30 2015

CROSSREFS

Cf. A000079, A010704, A141725, A153130, A156067, A157823.

Sequence in context: A209581 A050980 A053451 * A257164 A190555 A141843

Adjacent sequences:  A254073 A254074 A254075 * A254077 A254078 A254079

KEYWORD

sign,easy

AUTHOR

Paul Curtz, Jan 29 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 05:43 EDT 2018. Contains 315273 sequences. (Running on oeis4.)