login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053348 a(n) = solution to the postage stamp problem with 8 denominations and n stamps. 20
8, 32, 93, 228, 524, 1007, 1911, 3485 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.

REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, C12.

LINKS

Table of n, a(n) for n=1..8.

R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.

M. F. Challis, Two new techniques for computing extremal h-bases A_kComp. J. 36(2) (1993) 117-126

M. F. Challis, J. P. Robinson, Some extremal postage stamp bases, JIS 13 (2010) #10.2.3.

Erich Friedman, Postage stamp problem

W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.

Eric Weisstein's World of Mathematics, Postage stamp problem

CROSSREFS

Postage stamp sequences: A001208, A001209, A001210, A001211, A001212, A001213, A001214, A001215, A001216, A005342, A005343, A005344, A014616, A053346, A053348, A075060, A084192, A084193.

Sequence in context: A033155 A132117 A159941 * A019256 A286399 A014969

Adjacent sequences:  A053345 A053346 A053347 * A053349 A053350 A053351

KEYWORD

nonn,more

AUTHOR

N. J. A. Sloane, Jun 20 2003

EXTENSIONS

a(6) from Challis by R. J. Mathar, Apr 01 2006

Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004

a(7)-a(8) from Challis and Robinson by Robert Price, Jul 19 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 10:36 EDT 2019. Contains 323390 sequences. (Running on oeis4.)