This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084192 Array read by antidiagonals: T(n,k) = solution to postage stamp problem with n stamps and k denominations (n >= 1, k >= 1). 20
 1, 2, 2, 3, 4, 3, 4, 8, 7, 4, 5, 12, 15, 10, 5, 6, 16, 24, 26, 14, 6, 7, 20, 36, 44, 35, 18, 7, 8, 26, 52, 70, 71, 52, 23, 8, 9, 32, 70, 108, 126, 114, 69, 28, 9, 10, 40, 93, 162, 211, 216, 165, 89, 34, 10, 11, 46, 121, 228, 336, 388, 345, 234, 112, 40, 11, 12, 54, 154, 310, 524 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given in this sequence and in A001208, A001209, A001210, A001211, A001212, ... are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps. LINKS EXAMPLE Array begins:    1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11, ...    2,   4,   7,  10,  14,  18,  23,  28,  34,  40, ...    3,   8,  15,  26,  35,  52,  69,  89, 112, ...    4,  12,  24,  44,  71, 114, 165, 234, ...    5,  16,  36,  70, 126, 216, 345, ...    6,  20,  52, 108, 211, 388, ...    7,  26,  70, 162, 336, ...    8,  32,  93, 228, ...    9,  40, 121, ...   10,  46, ...   11, ...   ... CROSSREFS Postage stamp sequences: A001208 A001209 A001210 A001211 A001212 A001213 A001214 A001215 A001216 A005342 A005343 A005344 A014616 A053346 A053348 A075060 A084192 A084193 A084193 gives transposed array. Rows and columns give rise to A014616, A001208, A001209, A001210, A001211, A053346, A053348, A001212, A001213, A001214, A001215, A001216, A005342, A005343, A005344, A075060. Sequence in context: A051597 A084193 A049787 * A129595 A094508 A183517 Adjacent sequences:  A084189 A084190 A084191 * A084193 A084194 A084195 KEYWORD nonn,easy,nice,tabl AUTHOR N. J. A. Sloane, Jun 20 2003 EXTENSIONS Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004 More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jun 26 2003 Comments corrected by Shawn Pedersen, Apr 17 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 03:53 EDT 2019. Contains 327210 sequences. (Running on oeis4.)