

A053346


a(n) = solution to the postage stamp problem with 7 denominations and n stamps.


20



7, 26, 70, 162, 336, 638, 1137, 2001, 3191, 5047, 7820, 11568, 17178
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.


REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, C12.


LINKS

Table of n, a(n) for n=1..13.
R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206210.
M. F. Challis, Two new techniques for computing extremal hbases A_kComp. J. 36(2) (1993) 117126
M. F. Challis, J. P. Robinson, Some extremal postage stamp bases, JIS 13 (2010) #10.2.3.
Erich Friedman, Postage stamp problem
W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377380.
Eric Weisstein's World of Mathematics, Postage stamp problem


CROSSREFS

Postage stamp sequences: A001208, A001209, A001210, A001211, A001212, A001213, A001214, A001215, A001216, A005342, A005343, A005344, A014616, A053346, A053348, A075060, A084192, A084193.
Sequence in context: A299282 A269700 A006325 * A227021 A180669 A027964
Adjacent sequences: A053343 A053344 A053345 * A053347 A053348 A053349


KEYWORD

nonn,more


AUTHOR

N. J. A. Sloane, Jun 20 2003


EXTENSIONS

a(9) from Challis by R. J. Mathar, Apr 01 2006
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(10)a(13) from Challis and Robinson by Robert Price, Jul 19 2013


STATUS

approved



