This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053346 a(n) = solution to the postage stamp problem with 7 denominations and n stamps. 20
7, 26, 70, 162, 336, 638, 1137, 2001, 3191, 5047, 7820, 11568, 17178 (list; graph; refs; listen; history; text; internal format)



Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.


R. K. Guy, Unsolved Problems in Number Theory, C12.


Table of n, a(n) for n=1..13.

R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.

M. F. Challis, Two new techniques for computing extremal h-bases A_kComp. J. 36(2) (1993) 117-126

M. F. Challis, J. P. Robinson, Some extremal postage stamp bases, JIS 13 (2010) #10.2.3.

Erich Friedman, Postage stamp problem

W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.

Eric Weisstein's World of Mathematics, Postage stamp problem


Postage stamp sequences: A001208, A001209, A001210, A001211, A001212, A001213, A001214, A001215, A001216, A005342, A005343, A005344, A014616, A053346, A053348, A075060, A084192, A084193.

Sequence in context: A299282 A269700 A006325 * A227021 A180669 A027964

Adjacent sequences:  A053343 A053344 A053345 * A053347 A053348 A053349




N. J. A. Sloane, Jun 20 2003


a(9) from Challis by R. J. Mathar, Apr 01 2006

Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004

a(10)-a(13) from Challis and Robinson by Robert Price, Jul 19 2013



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 13:25 EDT 2019. Contains 326100 sequences. (Running on oeis4.)