This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053308 Partial sums of A053296. 6
 1, 9, 46, 175, 551, 1518, 3785, 8735, 18955, 39130, 77533, 148487, 276408, 502415, 895103, 1568062, 2708322, 4622488, 7811510, 13091798, 21791338, 36067176, 59419294, 97522270, 159571139, 260459265, 424302452, 690141333 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (9,-35,76,-98,70,-14,-20,19,-7,1). FORMULA a(n) = Sum_{i=0..floor(n/2)} C(n+8-i, n-2i), n >= 0. a(n) = Sum_{k=1..n} C(n-k+8,k+7), with n>=0. - Paolo P. Lava, Apr 16 2008 EXAMPLE a(n) = a(n-1) + a(n-2) + C(n+7,7); n >= 0; a(-1)=0. MATHEMATICA Table[Sum[Binomial[n+8-j, n-2j], {j, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, May 24 2018 *) PROG (PARI) for(n=0, 30, print1(sum(j=0, floor(n/2), binomial(n+8-j, n-2*j)), ", ")) \\ G. C. Greubel, May 24 2018 (MAGMA) [(&+[Binomial(n+8-j, n-2*j): j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, May 24 2018 CROSSREFS Cf. A053296, A053295, A136431. Cf. A228074. Sequence in context: A001781 A258477 A320755 * A201458 A034487 A035039 Adjacent sequences:  A053305 A053306 A053307 * A053309 A053310 A053311 KEYWORD easy,nonn AUTHOR Barry E. Williams, Mar 06 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 00:02 EST 2019. Contains 319184 sequences. (Running on oeis4.)