This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053309 Partial sums of A053308. 5
 1, 10, 56, 231, 782, 2300, 6085, 14820, 33775, 72905, 150438, 298925, 575333, 1077748, 1972851, 3540913, 6249235, 10871723, 18683233, 31775031, 53566369, 89633545, 149052839, 246575109, 406146248, 666605513, 1090907965 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (10,-44,111,-174,168,-84,-6,39,-26,8,-1). FORMULA a(n) = Sum_{i=0..floor(n/2)} C(n+9-i, n-2i), n >= 0. a(n) = Sum_{k=1..n} C(n-k+9,k+8), with n>=0. - Paolo P. Lava, Apr 16 2008 G.f.: 1/((x^2 + x - 1)*(x-1)^9). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009 EXAMPLE a(n) = a(n-1) + a(n-2) + C(n+8,8); n >= 0; a(-1)=0. MATHEMATICA Table[Sum[Binomial[n+9-j, n-2j], {j, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, May 24 2018 *) PROG (PARI) for(n=0, 30, print1(sum(j=0, floor(n/2), binomial(n+9-j, n-2*j)), ", ")) \\ G. C. Greubel, May 24 2018 (MAGMA) [(&+[Binomial(n+9-j, n-2*j): j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, May 24 2018 CROSSREFS Cf. A053296, A053295, A136431. Cf. A228074. Sequence in context: A001786 A258478 A320756 * A035040 A002889 A055911 Adjacent sequences:  A053306 A053307 A053308 * A053310 A053311 A053312 KEYWORD easy,nonn AUTHOR Barry E. Williams, Mar 06 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 13:32 EST 2019. Contains 319193 sequences. (Running on oeis4.)