login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053310 a(n) = (n+3)*binomial(n+8, 8)/3. 3
1, 12, 75, 330, 1155, 3432, 9009, 21450, 47190, 97240, 189618, 352716, 629850, 1085280, 1812030, 2941884, 4657983, 7210500, 10935925, 16280550, 23828805, 34337160, 48774375, 68368950, 94664700, 129585456, 175509972, 235358200 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

If Y is a 3-subset of an n-set X then, for n>=11, a(n-11) is the number of 11-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007

REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).

FORMULA

G.f.: (1+2*x)/(1-x)^10.

a(n) = binomial(n+8,n+2)*binomial(n+3,n)/28. - Zerinvary Lajos, May 12 2006

MATHEMATICA

CoefficientList[Series[(1+2*x)/(1-x)^10, {x, 0, 50}], x] (* G. C. Greubel, May 24 2018 *)

PROG

(PARI) for(n=0, 30, print1((n+3)*binomial(n+8, 8)/3, ", ")) \\ G. C. Greubel, May 24 2018

(MAGMA) [(n+3)*Binomial(n+8, 8)/3: n in [0..30]]; // G. C. Greubel, May 24 2018

CROSSREFS

Partial sums of A053367.

Cf. A053367, A053347, A000581.

Cf. A093560 ((3, 1) Pascal, column m=9).

Sequence in context: A246767 A092867 A292532 * A006235 A009642 A051104

Adjacent sequences:  A053307 A053308 A053309 * A053311 A053312 A053313

KEYWORD

easy,nonn

AUTHOR

Barry E. Williams, Mar 06 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 00:50 EDT 2018. Contains 316252 sequences. (Running on oeis4.)