The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053135 Binomial coefficients C(2*n+6,6). 7
 1, 28, 210, 924, 3003, 8008, 18564, 38760, 74613, 134596, 230230, 376740, 593775, 906192, 1344904, 1947792, 2760681, 3838380, 5245786, 7059052, 9366819, 12271512, 15890700, 20358520, 25827165, 32468436, 40475358, 50063860, 61474519, 74974368, 90858768 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Even indexed members of seventh column of Pascal's triangle A007318. Number of standard tableaux of shape (2n+1,1^6). - Emeric Deutsch, May 30 2004 LINKS Nathaniel Johnston, Table of n, a(n) for n = 0..1000 Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets Milan Janjic, Two Enumerative Functions Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 1). FORMULA G.f.: (1+21*x+35*x^2+7*x^3)/(1-x)^7. a(n) = binomial(2*n+6, 6) = A000579(2*n+6). a(n) = A000384(n+1)*A000384(n+2)*A000384(n+3)/90. - Bruno Berselli, Nov 12 2014 E.g.f.: (90 +2430*x +6975*x^2 +5655*x^3 +1710*x^4 +204*x^5 +8*x^6)* exp(x)/90. - G. C. Greubel, Sep 03 2018 MAPLE seq(binomial(2*n+6, 6), n=0..40); # Nathaniel Johnston, May 14 2011 MATHEMATICA Table[Binomial[2*n+6, 6], {n, 0, 30}] (* G. C. Greubel, Sep 03 2018 *) PROG (PARI) vector(30, n, n--; binomial(2*n+6, 6)) \\ G. C. Greubel, Sep 03 2018 (MAGMA) [Binomial(2*n+6, 6): n in [0..30]]; // G. C. Greubel, Sep 03 2018 CROSSREFS Cf. A000384, A000579, A002299, A053128, A053134, A190152. Sequence in context: A159542 A244944 A155466 * A340908 A297614 A249710 Adjacent sequences:  A053132 A053133 A053134 * A053136 A053137 A053138 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 16:32 EDT 2021. Contains 343177 sequences. (Running on oeis4.)