login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190152 Triangle of binomial coefficients binomial(3*n-k,3*n-3*k). 6
1, 1, 1, 1, 10, 1, 1, 28, 35, 1, 1, 55, 210, 84, 1, 1, 91, 715, 924, 165, 1, 1, 136, 1820, 5005, 3003, 286, 1, 1, 190, 3876, 18564, 24310, 8008, 455, 1, 1, 253, 7315, 54264, 125970, 92378, 18564, 680, 1, 1, 325, 12650, 134596, 490314, 646646, 293930, 38760, 969, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

From R. J. Mathar, Mar 15 2013: (Start)

The matrix inverse starts

  1;

  -1,1;

  9,-10,1;

  -288,322,-35,1;

  22356,-25003,2730,-84,1;

  -3428973,3835026,-418825,12936,-165,1;

  914976405,-1023326973,111759115,-3452449,44187,-286,1;

  ... (End)

LINKS

Nathaniel Johnston, Rows n = 0..100, flattened

EXAMPLE

Triangle begins:

  1

  1, 1

  1, 10, 1

  1, 28, 35, 1

  1, 55, 210, 84, 1

  1, 91, 715, 924, 165, 1

  1, 136, 1820, 5005, 3003, 286, 1

  1, 190, 3876, 18564, 24310, 8008, 455, 1

  1, 253, 7315, 54264, 125970, 92378, 18564, 680, 1

  ...

MATHEMATICA

Flatten[Table[Binomial[3n - k, 3n - 3k], {n, 0, 9}, {k, 0, n}]]

PROG

(Maxima) create_list(binomial(3*n-k, 3*n-3*k), n, 0, 9, k, 0, n);

(PARI) for(n=0, 10, for(k=0, n, print1(binomial(3*n-k, 3*(n-k)), ", "))) \\ G. C. Greubel, Dec 29 2017

CROSSREFS

Cf. A000447 (first subdiagonal), A053135 (second subdiagonal), A060544 (second column), A190088, A190153 (row sums), A190154 (diagonal sums).

Sequence in context: A159041 A154979 A146765 * A154984 A173047 A173045

Adjacent sequences:  A190149 A190150 A190151 * A190153 A190154 A190155

KEYWORD

nonn,easy,tabl

AUTHOR

Emanuele Munarini, May 05 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 01:37 EDT 2020. Contains 334757 sequences. (Running on oeis4.)