OFFSET
0,2
COMMENTS
Each subset a(0..(2^k)-1) gives all the divisors of F(2^(k+1)) up to k=4 (F_32) and after that a subset of such divisors. E.g., the terms a(0)-a(7) are the divisors of F_16 = 987 (A018760).
LINKS
Robert Price, Table of n, a(n) for n = 0..200
A. Karttunen, On Pascal's Triangle Modulo 2 in Fibonacci Representation, Fibonacci Quarterly, 42 (2004), 38-46.
FORMULA
a(n) = Sum_{k=0..n} A127872(n,k)*Fibonacci(2*k+1), see A000045 and A001519. - Philippe Deléham, Aug 30 2007
MAPLE
MATHEMATICA
Table[k = Floor[Log[2, n + 1]]; Product[j = 2^(i + 1); l = Fibonacci[j + 1] + Fibonacci[j - 1]; If[BitAnd[2^i, n] == 0, b = 0, b = 1]; l^b, {i, 0, k}], {n, 0, 200}] (* Robert Price, Feb 13 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 02 1999
STATUS
approved