This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050614 Products of distinct terms of A001566: a(n) = Product(L(2^(i+1))^bit(n,i),i = 0..[log2(n+1)]). 8
 1, 3, 7, 21, 47, 141, 329, 987, 2207, 6621, 15449, 46347, 103729, 311187, 726103, 2178309, 4870847, 14612541, 34095929, 102287787, 228929809, 686789427, 1602508663, 4807525989, 10749959329, 32249877987, 75249715303 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Each subset a[0..(2^k)-1] gives all the divisors of F(2^(k+1)) up to k=4 (F_32) and after that a subset of such divisors. E.g. the terms a(0)-a(7) are the divisors of F_16 = 987 (A018760) LINKS A. Karttunen, On Pascal's Triangle Modulo 2 in Fibonacci Representation, Fibonacci Quarterly, 42 (2004), 38-46. FORMULA a(n)=Sum_{k, 0<=k<=n}A127872(n,k)*Fibonacci(2*k+1), see A000045 and A001519. - Philippe DELEHAM, Aug 30 2007 MAPLE [seq(A050614(n), n=0..30)]; A050614 := n -> product('luc(2^(i+1))^bit_i(n, i)', 'i'=0..floor_log_2(n+1)); CROSSREFS Bisection of A075149 and A050613 (see there for the other Maple procedures), subset of A062877. Cf. also A050615. Sequence in context: A219589 A092203 A018760 * A181393 A036569 A018303 Adjacent sequences:  A050611 A050612 A050613 * A050615 A050616 A050617 KEYWORD nonn AUTHOR Antti Karttunen Dec 02 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .