login
A075149
Sum_{i=0..2*A053645(n)} (C(2*A053645(n),i) mod 2)*A000045(n-i) [where C(r,c) is the binomial coefficient (A007318) and A000045(n) is the n-th Fibonacci number].
2
0, 1, 1, 3, 3, 7, 9, 21, 21, 47, 63, 141, 147, 329, 441, 987, 987, 2207, 2961, 6621, 6909, 15449, 20727, 46347, 46389, 103729, 139167, 311187, 324723, 726103, 974169, 2178309, 2178309, 4870847, 6534927, 14612541, 15248163, 34095929, 45744489
OFFSET
0,4
LINKS
MAPLE
with(combinat); [seq(A075149(n, n=0..50)]; A075149 := n -> add((binomial(2*r(n), i) mod 2)*fibonacci(n-i), i=0..2*r(n));
r := n -> n - 2^floor_log_2(n);
floor_log_2 := proc(n) local nn, i; nn := n; for i from -1 to n do if(0 = nn) then RETURN(i); fi; nn := floor(nn/2); od; end;
CROSSREFS
Bisection gives A050614.
Sequence in context: A320314 A056295 A117525 * A161618 A202873 A157933
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 05 2002
STATUS
approved