login
Products of distinct terms of A001566: a(n) = Product_{i=0..floor(log_2(n+1))} L(2^(i+1))^bit(n,i).
8

%I #22 Jun 23 2021 02:15:32

%S 1,3,7,21,47,141,329,987,2207,6621,15449,46347,103729,311187,726103,

%T 2178309,4870847,14612541,34095929,102287787,228929809,686789427,

%U 1602508663,4807525989,10749959329,32249877987,75249715303

%N Products of distinct terms of A001566: a(n) = Product_{i=0..floor(log_2(n+1))} L(2^(i+1))^bit(n,i).

%C Each subset a(0..(2^k)-1) gives all the divisors of F(2^(k+1)) up to k=4 (F_32) and after that a subset of such divisors. E.g., the terms a(0)-a(7) are the divisors of F_16 = 987 (A018760).

%H Robert Price, <a href="/A050614/b050614.txt">Table of n, a(n) for n = 0..200</a>

%H A. Karttunen, <a href="http://www.fq.math.ca/Papers1/42-1/quartkarttunen01_2004.pdf">On Pascal's Triangle Modulo 2 in Fibonacci Representation</a>, Fibonacci Quarterly, 42 (2004), 38-46.

%F a(n) = Sum_{k=0..n} A127872(n,k)*Fibonacci(2*k+1), see A000045 and A001519. - _Philippe Deléham_, Aug 30 2007

%p [seq(A050614(n),n=0..30)]; A050614 := n -> product('luc(2^(i+1))^bit_i(n,i)','i'=0..floor_log_2(n+1));

%t Table[k = Floor[Log[2, n + 1]]; Product[j = 2^(i + 1); l = Fibonacci[j + 1] + Fibonacci[j - 1]; If[BitAnd[2^i, n] == 0, b = 0, b = 1]; l^b, {i, 0, k}], {n, 0, 200}] (* _Robert Price_, Feb 13 2017 *)

%Y Bisection of A075149 and A050613 (see there for the other Maple procedures), subset of A062877. Cf. also A050615.

%K nonn

%O 0,2

%A _Antti Karttunen_, Dec 02 1999