The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047265 Triangle T(n,k), for n >= 1, 1 <= k <= n, read by rows, giving coefficient of x^n in expansion of (Product_{j>=1} (1-(-x)^j) - 1 )^k. 5
1, -1, 1, 0, -2, 1, 0, 1, -3, 1, -1, 0, 3, -4, 1, 0, -2, -1, 6, -5, 1, -1, 2, -3, -4, 10, -6, 1, 0, -2, 6, -3, -10, 15, -7, 1, 0, 2, -6, 12, 0, -20, 21, -8, 1, 0, 1, 6, -16, 19, 9, -35, 28, -9, 1, 0, 0, 0, 16, -35, 24, 28, -56, 36, -10, 1, -1, 2, -3, -6, 40, -65, 21, 62, -84, 45, -11, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
This is an ordinary convolution triangle. If a column k=0 starting at n=0 is added, then this is the Riordan triangle R(1, f(x)), with
f(x) = Product_{j>=1} (1 - (-x)^j) - 1, generating {0, {A121373(n)}_{n>=1}}. - Wolfdieter Lang, Feb 16 2021
LINKS
H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440.
FORMULA
G.f. column k: (Product_{j>=1} (1 - (-x)^j) - 1)^k, for k >= 1. See the name and a Riordan triangle comment above. - Wolfdieter Lang, Feb 16 2021
From G. C. Greubel, Sep 07 2023: (Start)
T(n, n) = 1.
T(n, n-1) = -A000027(n-1).
T(n, n-2) = A000217(n-3).
T(n, n-3) = -A000292(n-5).
Sum_{k=1..n} T(n, k) = (-1)^n * A307059(n).
Sum_{k=1..n} (-1)^k * T(n, k) = (-1)^n * A000041(n). (End)
EXAMPLE
Triangle starts:
1,
-1, 1,
0, -2, 1,
0, 1, -3, 1,
-1, 0, 3, -4, 1,
0, -2, -1, 6, -5, 1,
-1, 2, -3, -4, 10, -6, 1,
0, -2, 6, -3, -10, 15, -7, 1,
0, 2, -6, 12, 0, -20, 21, -8, 1,
0, 1, 6, -16, 19, 9, -35, 28, -9, 1,
0, 0, 0, 16, -35, 24, 28, -56, 36, -10, 1,
-1, 2, -3, -6, 40, ...
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]
[1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
T:= proc(n, k) option remember;
`if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, g(n)),
(q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Feb 07 2021
MATHEMATICA
T[n_, k_]:= SeriesCoefficient[(-1)^n*(Product[(1-x^j), {j, n}] - 1)^k, {x, 0, n}];
Table[T[n, k], {n, 12}, {k, n}]//Flatten (* Jean-François Alcover, Dec 05 2013 *)
PROG
(PARI) T(n, k) = polcoeff((-1)^n*(Ser(prod(i=1, n, 1-x^i)-1)^k), n) \\ Ralf Stephan, Dec 08 2013
(Magma)
R<x>:=PowerSeriesRing(Integers(), 40);
T:= func< n, k | Coefficient(R!( (-1)^n*(-1 + (&*[1 - x^j: j in [1..n]]) )^k ), n) >;
[T(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Sep 07 2023
(SageMath)
from sage.combinat.q_analogues import q_pochhammer
P.<x> = PowerSeriesRing(ZZ, 50)
def T(n, k): return P( (-1)^n*(-1 + q_pochhammer(n, x, x) )^k ).list()[n]
flatten([[T(n, k) for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Sep 07 2023
CROSSREFS
Cf. A341418 (differently signed).
Sequence in context: A348951 A369815 A156135 * A341418 A185962 A279928
KEYWORD
sign,easy,nice,tabl
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 19:25 EDT 2024. Contains 372494 sequences. (Running on oeis4.)