login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156135 Denominator coefficients of infinite over the Fibonacci sequence: p(x,n)=(1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}]; t(n,m)=Coefficients(Numberator(p(x,n)). 0
1, 0, -1, 1, 0, 1, -2, 1, 0, 1, -3, 1, 1, 0, 1, -4, -4, 1, 0, -1, 8, 9, -23, 6, 1, 0, 1, -13, -41, 106, -41, -13, 1, 0, 1, -21, -146, 484, -152, -186, 19, 1, 0, 1, -33, -492, 1784, 1784, -492, -33, 1, 0, -1, 55, 1359, -10701, -8552, 27128, -7875, -1467, 53, 1, 0, 1, -89 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

Row sums are:

{1, 0, 0, 0, -6, 0, 0, 0, 2520, 0, 0,...}.

The denominator and numerator polynomials appear to be new.

LINKS

Table of n, a(n) for n=0..64.

FORMULA

p(x,n)=(1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}]; t(n,m)=Coefficients(Numerator(p(x,n)).

EXAMPLE

{1},

{0, -1, 1},

{0, 1, -2, 1},

{0, 1, -3, 1, 1},

{0, 1, -4, -4, 1},

{0, -1, 8, 9, -23, 6, 1},

{0, 1, -13, -41, 106, -41, -13, 1},

{0, 1, -21, -146, 484, -152, -186, 19, 1},

{0, 1, -33, -492, 1784, 1784, -492, -33, 1},

{0, -1, 55, 1359, -10701, -8552, 27128, -7875, -1467, 53, 1},

{0, 1, -89, -3872, 50193, 117271, -327008, 117271, 50193, -3872, -89, 1}

MATHEMATICA

Clear[t0, p, x, n, m];

p[x_, n_] = (1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}]

Table[Numerator[FullSimplify[ExpandAll[p[x, n]]]], {n, 0, 10}];

Table[CoefficientList[Numerator[FullSimplify[ExpandAll[p[x, n]]]], x], {n, 0, 10}];

Flatten[%]

CROSSREFS

A000045

Sequence in context: A030528 A077227 A089263 * A047265 A185962 A279928

Adjacent sequences:  A156132 A156133 A156134 * A156136 A156137 A156138

KEYWORD

sign,tabl,uned

AUTHOR

Roger L. Bagula, Feb 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 05:23 EDT 2018. Contains 316275 sequences. (Running on oeis4.)