login
A045712
Primes with first digit 6.
23
61, 67, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229
OFFSET
1,1
LINKS
MATHEMATICA
Flatten[Table[Prime[Range[PrimePi[6 * 10^n] + 1, PrimePi[7 * 10^n]]], {n, 3}]] (* Alonso del Arte, Jul 19 2014 *)
Select[Table[Prime[n], {n, 7000}], First[IntegerDigits[#]]==6 &] (* Vincenzo Librandi, Aug 08 2014 *)
PROG
(Magma) [p: p in PrimesUpTo(10^4) | Intseq(p)[#Intseq(p)] eq 6]; // Bruno Berselli, Jul 19 2014
(Python)
from itertools import chain, count, islice
from sympy import primerange
def A045712_gen(): # generator of terms
return chain.from_iterable(primerange(6*(m:=10**l), 7*m) for l in count(0))
list(islice(A045712_gen(), 40)) # Chai Wah Wu, Dec 08 2024
(Python)
from sympy import primepi
def A045712(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x+primepi(min(6*(m:=10**(l:=len(str(x))-1))-1, x))-primepi(min(7*m-1, x))+sum(primepi(6*(m:=10**i)-1)-primepi(7*m-1) for i in range(l))
return bisection(f, n, n) # Chai Wah Wu, Dec 08 2024
CROSSREFS
For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509.
Column k=6 of A262369.
Sequence in context: A141167 A062673 A284291 * A090154 A039390 A043213
KEYWORD
nonn,base,easy
AUTHOR
EXTENSIONS
More terms from Erich Friedman.
STATUS
approved