login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A045709
Primes with first digit 3.
24
3, 31, 37, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229
OFFSET
1,1
LINKS
MATHEMATICA
Select[Table[Prime[n], {n, 4000}], First[IntegerDigits[#]]==3 &] (* Vincenzo Librandi, Aug 08 2014 *)
PROG
(PARI) isok(n) = isprime(n) && (digits(n, 10)[1] == 3) \\ Michel Marcus, Jun 08 2013
(Magma) [p: p in PrimesUpTo(3300) | Intseq(p)[#Intseq(p)] eq 3]; // Vincenzo Librandi, Aug 08 2014
(Python)
from itertools import chain, count, islice
from sympy import primerange
def A045709_gen(): # generator of terms
return chain.from_iterable(primerange(3*(m:=10**l), m<<2) for l in count(0))
A045709_list = list(islice(A045709_gen(), 40)) # Chai Wah Wu, Dec 07 2024
(Python)
from sympy import primepi
def A045709(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x+primepi(min(3*(m:=10**(l:=len(str(x))-1))-1, x))-primepi(min((m<<2)-1, x))+sum(primepi(3*(m:=10**i)-1)-primepi((m<<2)-1) for i in range(l))
return bisection(f, n, n) # Chai Wah Wu, Dec 07 2024
CROSSREFS
Cf. A000040.
For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509.
Column k=3 of A262369.
Sequence in context: A141177 A154502 A046282 * A090151 A198187 A198019
KEYWORD
nonn,base,easy
AUTHOR
EXTENSIONS
More terms from Erich Friedman.
STATUS
approved