This site is supported by donations to The OEIS Foundation.

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A045309 Primes congruent to {0, 2} mod 3. 15
 2, 3, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Also, primes p such that the equation x^3 == y (mod p) has a unique solution x for every choice of y. - Klaus Brockhaus, Mar 02 2001; Michel Drouzy (DrouzyM(AT)noos.fr), Oct 28 2001 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 FORMULA a(n) ~ 2n log n. - Charles R Greathouse IV, Apr 20 2015 MATHEMATICA Select[Prime[Range[150]], MemberQ[{0, 2}, Mod[#, 3]]&] (* Harvey P. Dale, Jun 14 2011 *) PROG (MAGMA) [ p: p in PrimesUpTo(1000) | #[ x: x in ResidueClassRing(p) | x^3 eq 2 ] eq 1 ]; // Klaus Brockhaus, Apr 11 2009 (PARI) is(n)=isprime(n) && n%3!=1 \\ Charles R Greathouse IV, Apr 20 2015 CROSSREFS Cf. A040028, A014752, A060121, A003627, A007528, A045410. Sequence in context: A093503 A040036 A040078 * A103664 A129942 A113239 Adjacent sequences:  A045306 A045307 A045308 * A045310 A045311 A045312 KEYWORD nonn,easy AUTHOR EXTENSIONS Edited by N. J. A. Sloane, Apr 11 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 22:51 EDT 2017. Contains 287181 sequences.