login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014752 Primes of the form x^2 + 27y^2. 17
31, 43, 109, 127, 157, 223, 229, 277, 283, 307, 397, 433, 439, 457, 499, 601, 643, 691, 727, 733, 739, 811, 919, 997, 1021, 1051, 1069, 1093, 1327, 1399, 1423, 1459, 1471, 1579, 1597, 1627, 1657, 1699, 1723, 1753, 1777, 1789, 1801, 1831, 1933, 1999, 2017 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Primes p == 1 (mod 3) such that 2 is a cubic residue mod p.

Primes p == 1 (mod 6) such that 2 and -2 are both cubes (one implies the other) mod p. - Warren D. Smith

Subsequence of A040028, complement of A045309 relative to A040028. For p in this sequence, x^3 == 2 (mod p) has three solutions in integers from 0 to p-1, whose sum is p (A059899) or 2*p (A059914). The solutions are given in A060122, A060123 and A060124. - Klaus Brockhaus, Mar 02 2001

Primes p = 3m+1 such that 2^m == 1 (mod p). Subsequence of A016108 which also includes composites satisfying this congruence. - Alzhekeyev Ascar M, Feb 22 2012

REFERENCES

K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, 1982, Prop. 9.6.2, p. 119.

LINKS

N. J. A. Sloane and T. D. Noe, Table of n, a(n) for n = 1..17753 (The first 1000 terms were computed by T. D. Noe)

S. R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.

Zak Seidov, Corresponding values of x and y

Bram van Asch, On the structure of the ring Z[2^(1/3)], Internat. J. Pure Appl. Math., 16 (No. 2, 2004), 243-251. See Prop. 7.

MATHEMATICA

With[{nn=50}, Take[Select[Union[First[#]^2+27Last[#]^2&/@Tuples[Range[ nn], 2]], PrimeQ], nn]] (* Harvey P. Dale, Jul 28 2014 *)

nn = 1398781; re = Sort[Reap[Do[Do[If[PrimeQ[p = x^2 + 27*y^2], Sow[{p, x, y}]], {x, Sqrt[nn - 27*y^2]}], {y, Sqrt[nn/27]}]][[2, 1]]]; (* For all 17753 values of a(n), x(n) and y(n). - Zak Seidov, May 20 2016 *)

PROG

(PARI)

{ fc(a, b, c, M) = my(p, t1, t2, n); t1 = listcreate();

for(n=1, M, p = prime(n);

t2 = qfbsolve(Qfb(a, b, c), p); if(t2 == 0, , listput(t1, p)));

print(t1);

}

fc(1, 0, 27, 1000);

\\ N. J. A. Sloane, Jun 06 2014

(MAGMA) [p: p in PrimesUpTo(2500) | NormEquation(27, p) eq true]; // Vincenzo Librandi, Jul 24 2016

CROSSREFS

Cf. A040028, A045309, A059899, A059914, A060122, A060123, A060124, A014753.

Sequence in context: A307950 A059898 A016108 * A306787 A227622 A020348

Adjacent sequences:  A014749 A014750 A014751 * A014753 A014754 A014755

KEYWORD

nonn

AUTHOR

Klaus Brockhaus, Mar 02 2001

EXTENSIONS

Definition provided by T. D. Noe, May 08 2005

Entry revised by Michael Somos and N. J. A. Sloane, Jul 28 2006

Defective Mma program replaced with PARI program, b-file recomputed and extended by N. J. A. Sloane, Jun 06 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 11:18 EST 2019. Contains 329144 sequences. (Running on oeis4.)