

A007528


Primes of form 6n1.
(Formerly M3809)


53



5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

For values of n see A024898.
Also primes p such that p^q  2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6n1)^q expands to 6h1 some h. Then p^q2 = 6h12 is divisible by 3 thus not prime.  Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n1) for n <= 4.  Reinhard Zumkeller, Jul 13 2012


REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

T. D. Noe, Table of n, a(n) for n=1..1000
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].


FORMULA

A003627 \ {2}. [From R. J. Mathar, Oct 28 2008]


MATHEMATICA

a={}; Do[x=6*n1; If[PrimeQ[x], AppendTo[a, x]], {n, 10^2}]; a  Vladimir Joseph Stephan Orlovsky, Apr 29 2008
Select[6Range[100]1, PrimeQ] (* Harvey P. Dale, Feb 14 2011 *)


PROG

(PARI) forprime(p=2, 1e3, if(p%6==5, print1(p", "))) \\ Charles R Greathouse IV, Jul 15 2011
(Haskell)
a007528 n = a007528_list !! (n1)
a007528_list = [x  k < [0..], let x = 6 * k + 5, a010051' x == 1]
 Reinhard Zumkeller, Jul 13 2012


CROSSREFS

Cf. A132231, A117047, A214360, A010051.
Sequence in context: A016969 * A144918 A144920 A051615 A063909 A181575
Adjacent sequences: A007525 A007526 A007527 * A007529 A007530 A007531


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane.


STATUS

approved



