The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A039754 Irregular triangle read by rows: T(n,k) = number of binary codes of length n with k words (n >= 0, 0 <= k <= 2^n); also number of 0/1-polytopes with vertices from the unit n-cube; also number of inequivalent Boolean functions of n variables with exactly k nonzero values under action of Jevons group. 13
 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 6, 3, 3, 1, 1, 1, 1, 4, 6, 19, 27, 50, 56, 74, 56, 50, 27, 19, 6, 4, 1, 1, 1, 1, 5, 10, 47, 131, 472, 1326, 3779, 9013, 19963, 38073, 65664, 98804, 133576, 158658, 169112, 158658, 133576, 98804, 65664, 38073, 19963, 9013, 3779, 1326, 472, 131, 47, 10, 5, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS For N=1 through N=5, the first 2^(N-1) terms of row N are also found in triangle A171871, which is related to A005646. This was shown for all N by Andrew Weimholt, Dec 30 2009. [Robert Munafo, Jan 25 2010] REFERENCES F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 112. M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 150. LINKS Jan Brandts, A. Cihangir, Enumeration and investigation of acute 0/1-simplices modulo the action of the hyperoctahedral group, arXiv preprint arXiv:1512.03044 [math.CO], 2015. See Fig. 13. D. Condon, S. Coskey, L. Serafin, C. Stockdale, On generalizations of separating and splitting families, arXiv preprint arXiv:1412.4683 [math.CO], 2014-2015. Jacob Feldman, A catalog of Boolean concepts, Journal of Mathematical Psychology, Volume 47, Issue 1, 2003, 75-89. H. Fripertinger, Enumeration, construction and random generation of block codes, Designs, Codes, Crypt., 14 (1998), 213-219. H. Fripertinger, Isometry Classes of Codes Harald Fripertinger, Enumeration of block codes Tilman Piesk, Illustration of row 3 FORMULA Reference gives g.f. Fripertinger gives g.f. for the number of classes of (n, m) nonlinear codes over an alphabet of size A. EXAMPLE Triangle begins:   k     0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16       sums n 0       1                                                                          1 1       1   1   1                                                                  3 2       1   1   2   1   1                                                          6 3       1   1   3   3   6   3   3   1   1                                         22 4       1   1   4   6  19  27  50  56  74  56  50  27  19   6   4   1   1        402 MATHEMATICA P = IntegerPartitions; AC[d_Integer] := Module[{C, M, p}, (* from W. Y. C. Chen algorithm *) M[p_List] := Plus @@ p!/(Times @@ p * Times @@ (Length /@ Split[p]!)); C[p_List, q_List] := Module[{r, m, k, x}, r = If[0 == Length[q], 1, 2*2^IntegerExponent[LCM @@ q, 2]]; m = LCM @@ Join[p/GCD[r, p], q/GCD[r, q]]; CoefficientList[Expand[Product[(1 + x^(k *r))^((Plus @@ Map[MoebiusMu[k/#]*2^Plus @@ GCD[#*r, Join[p, q]]&, Divisors[k]])/(k*r)), {k, 1, m}]], x]]; Sum[Binomial[d, p]*Plus @@ Plus @@ Outer[M[#1] M[#2] C[#1, #2]*2^(d - Length[#1] - Length[#2]) &, P[p], P[d - p], 1], {p, 0, d}]/(d! 2^d)]; AC  = {1}; AC /@ Range[0, 5] // Flatten (* Jean-François Alcover, Dec 15 2019, after Robert A. Russell in A034189 *) Table[ CoefficientList[ CycleIndexPolynomial[ GraphData[ {"Hypercube", n}, "AutomorphismGroup"], Array[Subscript[x, ##] &, 2^n]] /. Table[ Subscript[x, i] -> 1 + x^i, {i, 1, 2^n}], x], {n, 1, 8}] // Grid (* Geoffrey Critzer, Jan 10 2020 *) CROSSREFS Row sums give A000616. Cf. A052265. Rows give A034188, A034189, A034190, etc. For other versions of this triangle see A171876, A039754, A276777. Cf. A171871. [Robert Munafo, Jan 25 2010] Sequence in context: A129179 A120621 A201080 * A213919 A337220 A062277 Adjacent sequences:  A039751 A039752 A039753 * A039755 A039756 A039757 KEYWORD nonn,tabf,nice AUTHOR EXTENSIONS Corrected and extended by Vladeta Jovovic, Apr 20 2000 Entry revised by N. J. A. Sloane, Sep 19 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 30 21:21 EDT 2022. Contains 357106 sequences. (Running on oeis4.)