login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034189 Number of binary codes of length 4 with n words. 11
1, 1, 4, 6, 19, 27, 50, 56, 74, 56, 50, 27, 19, 6, 4, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also number of 2-colorings of the vertices of the 4-cube having n nodes of one color.

REFERENCES

W. Y. C. Chen, Induced cycle structures of the hyperoctahedral group. SIAM J. Disc. Math. 6 (1993), 353-362.

H. Fripertinger, Enumeration, construction and random generation of block codes, Designs, Codes, Crypt., 14 (1998), 213-219.

R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1979.

LINKS

Table of n, a(n) for n=0..16.

H. Fripertinger, Isometry Classes of Codes

MATHEMATICA

From Robert A. Russell, May 08 2007: (Start)

P[ n_Integer ]:=P[ n ]=P[ n, n ]; P[ n_Integer, _ ]:={}/; (n<0); (* partitions *)

P[ 0, _ ]:={{}}; P[ n_Integer, 1 ]:={Table[ 1, {n} ]}; P[ _, 0 ]:={}; (*S.S. Skiena*)

P[ n_Integer, m_Integer ]:=Join[ Map[ (Prepend[ #, m ])&, P[ n-m, m ] ], P[ n, m-1 ] ];

AC[ d_Integer ]:=Module[ {C, M, p}, (* from W.Y.C. Chen algorithm *)

M[ p_List ]:=Plus@@p!/(Times@@p Times@@(Length/@Split[ p ]!));

C[ p_List, q_List ]:=Module[ {r, m, k, x}, r=If[ 0==Length[ q ], 1, 2 2^

IntegerExponent[ LCM@@q, 2 ] ]; m=LCM@@Join[ p/GCD[ r, p ], q/GCD[ r, q ] ];

CoefficientList[ Expand[ Product[ (1+x^(k r))^((Plus@@Map[ MoebiusMu[ k/# ]

2^Plus@@GCD[ #r, Join[ p, q ] ]&, Divisors[ k ] ])/(k r)), {k, 1, m} ] ], x ] ];

Sum[ Binomial[ d, p ]Plus@@Plus@@Outer[ M[ #1 ]M[ #2 ]C[ #1, #2 ]2^(d-Length[ #1 ]-Length[ #2 ])&, P[ p ], P[ d-p ], 1 ], {p, 0, d} ]/(d!2^d) ]; AC[ 4 ]

(End)

CROSSREFS

Cf. A034188, A034190, A034191, A034192, A034193, A034194, A034195, A034196, A034197.

Cf. A171872 and A171876. - Robert Munafo, Jan 25 2010

A row of A039754.

Sequence in context: A012928 A013160 A153777 * A024697 A024874 A095383

Adjacent sequences:  A034186 A034187 A034188 * A034190 A034191 A034192

KEYWORD

nonn,fini,full

AUTHOR

N. J. A. Sloane

EXTENSIONS

Edited by N. J. A. Sloane at the suggestion of Andrew Plewe, May 11 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 21 21:01 EST 2017. Contains 281110 sequences.