login
A038601
Prime numbers p such that the number of partitions of p is also a prime.
3
2, 3, 5, 13, 157, 491, 863, 1621, 2633, 5347, 8117, 13513, 35227, 62311, 76367, 84017, 141637, 170537, 189353, 192667, 201821, 216617, 251677, 269257, 288203, 293621, 353807, 366103, 367621, 372023, 441703, 444167, 478571, 518657, 582371, 626333
OFFSET
0,1
EXAMPLE
5 = (1+1+1+1+1+1,1+1+1+2,1+1+3,1+4,1+2+2,2+3,5) - partition(5) = 7; 5 and 7 are primes.
MATHEMATICA
Do[ If[ PrimeQ[n] && PrimeQ[ PartitionsP[n]], Print[n]], {n, 1, 10^5} ]
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Simon Plouffe
More terms from Robert G. Wilson v, Aug 29 2001
Terms after 84017 added by Jacques Tramu, Jun 26 2005
Corrected by T. D. Noe, Oct 31 2006
STATUS
approved