|
|
A046063
|
|
Numbers k such that the k-th partition number A000041(k) is prime.
|
|
50
|
|
|
2, 3, 4, 5, 6, 13, 36, 77, 132, 157, 168, 186, 188, 212, 216, 302, 366, 417, 440, 491, 498, 525, 546, 658, 735, 753, 825, 841, 863, 1085, 1086, 1296, 1477, 1578, 1586, 1621, 1793, 2051, 2136, 2493, 2502, 2508, 2568, 2633, 2727, 2732, 2871, 2912, 3027, 3098, 3168, 3342, 3542, 3641, 4118
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The corresponding primes are given in A049575. - Joerg Arndt, May 09 2013
|
|
LINKS
|
Max Alekseyev, Table of n, a(n) for n = 1..4967 (contains all terms below 10^8)
Chris K. Caldwell, Top twenty prime partition numbers, The Prime Pages.
G. P. Michon, Table of partition function p(n) (n=0 through 4096)
G. K. Patil, Ramanujan's Life And His Contributions In The Field Of Mathematics, International Journal of Scientific Research and Engineering Studies (IJSRES), Volume 1(6) (2014), ISSN: 2349-8862.
Eric Weisstein's World of Mathematics, Partition Function P Congruences.
Eric Weisstein's World of Mathematics, Partition Function P.
Eric Weisstein's World of Mathematics, Integer Sequence Primes.
|
|
MATHEMATICA
|
Select[ Range@3341, PrimeQ@ PartitionsP@# &] (* Robert G. Wilson v *)
|
|
PROG
|
(PARI) for(n=0, 10^5, my(p=numbpart(n)); if(isprime(p), print1(n, ", "))); \\ Joerg Arndt, May 09 2013
(Python)
from sympy import isprime, npartitions
print([n for n in range(1, 5001) if isprime(npartitions(n))]) # Indranil Ghosh, Apr 10 2017
|
|
CROSSREFS
|
Cf. A000041, A035359, A049575, A051143, A111036, A111045, A114165, A111389, A113499, A114166, A114167, A114168, A114169, A114170, A115214.
Sequence in context: A200331 A010349 A032995 * A065638 A204896 A334733
Adjacent sequences: A046060 A046061 A046062 * A046064 A046065 A046066
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
Eric W. Weisstein
|
|
EXTENSIONS
|
b-file extended by Max Alekseyev, Jul 07 2009, Jun 14 2011, Jan 08 2012, May 19 2014
|
|
STATUS
|
approved
|
|
|
|