login
A114747
a(1) = 1, a(2) = 1, a(n+1) = least Fibonacci number of the form k*(a(n-1)) - a(n), not included earlier.
1
1, 1, 2, 3, 5, 13, 377, 10946
OFFSET
1,3
COMMENTS
No further terms exist since there is no Fibonacci number congruent to -10946 modulo 377. - Max Alekseyev, Jun 16 2011
EXAMPLE
377 = 5*78 -13, k = 78.
MATHEMATICA
a[1] = a[2] = 1;
a[n_] := a[n] = For[i = 1, True, i++, f = Fibonacci[i]; If[FreeQ[Array[a, n-1], f] && IntegerQ[(f + a[n-1])/a[n-2]], Return[f]]];
Array[a, 8] (* Jean-François Alcover, Nov 09 2020 *)
CROSSREFS
Cf. A114748.
Sequence in context: A120494 A038601 A372228 * A041639 A006985 A042907
KEYWORD
nonn,fini,full
AUTHOR
Amarnath Murthy, Nov 15 2005
EXTENSIONS
Keywords fini, full from Max Alekseyev, Jun 16 2011
STATUS
approved