OFFSET
1,4
COMMENTS
Enumeration uses Wedderburn-Artin theorem and fact that a finite division ring is a field.
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3 * 3 and 375 = 3 * 5^3 both have prime signature (3,1).
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, pp. 274-276.
John Knopfmacher, Abstract analytic number theory, North-Holland, 1975, pp. 63-64.
T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, 2001.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..16384
Catalina Calderón and María José Zárate, The Number of Semisimple Rings of Order at most x, Extracta mathematicae, Vol. 7, No. 2-3 (1992), pp. 144-147.
J. Duttlinger, Eine Bemerkung zu einer asymptotischen Formel von Herrn Knopfmacher, Journal für die reine und angewandte Mathematik, Vol. 1974, No. 266 (1974), pp. 104-106.
John Knopfmacher, Arithmetical properties of finite rings and algebras, and analytic number theory, Journal für die reine und angewandte Mathematik, Volume 1972, No. 252 (1972), pp. 16-43.
Werner Georg Nowak, On the value distribution of a class of arithmetic functions, Commentationes Mathematicae Universitatis Carolinae, Vol. 37, No. 1 (1996), pp. 117-134.
FORMULA
Multiplicative with a(p^k) = A004101(k).
From Amiram Eldar, Jan 31 2024: (Start)
Dirichlet g.f.: Product_{k,m>=1} zeta(k*m^2*s).
MATHEMATICA
With[{emax = 7}, f[e_] := f[e] = Coefficient[Series[Product[1/(1 - x^(j*k^2)), {k, 1, Floor[Sqrt[emax]] + 1}, {j, 1, Floor[emax/k^2] + 1}], {x, 0, emax}], x, e]; a[1] = 1; a[n_] := Times @@ f /@ FactorInteger[n][[;; , 2]]; Array[a, 2^emax]] (* Amiram Eldar, Jan 31 2024, using code by Vaclav Kotesovec at A004101 *)
PROG
CROSSREFS
KEYWORD
nonn,nice,mult
AUTHOR
Paolo Dominici (pl.dm(AT)libero.it)
STATUS
approved