The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321271 Number of connected factorizations of n into positive integers > 1 with z-density -1. 2
 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 7, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 7, 5, 1, 1, 3, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS These are z-trees (A303837, A305081, A305253, A321279) where we relax the requirement of pairwise indivisibility. Given a finite multiset S of positive integers greater than 1, let G(S) be the simple labeled graph with vertices the distinct elements of S and with edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. Then S is said to be connected if G(S) is a connected graph. The z-density of a factorization S is defined to be Sum_{s in S} (omega(s) - 1) - omega(n), where omega = A001221 and n is the product of S. LINKS EXAMPLE The a(72) = 8 factorizations are (2*2*3*6), (2*2*18), (2*3*12), (2*36), (3*4*6), (3*24), (4*18), (72). Missing from this list but still connected are (2*6*6),(6*12). MATHEMATICA facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]]; zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c=={}, s, zsm[Union[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]]; zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[Times@@s]; Table[Length[Select[facs[n], And[zensity[#]==-1, Length[zsm[#]]==1]&]], {n, 100}] CROSSREFS Cf. A001055, A001221, A030019, A286518, A303837, A304118, A304382, A305052, A305081, A305193, A305253, A319786, A321229, A321253. Sequence in context: A328855 A327658 A319786 * A305193 A038538 A293515 Adjacent sequences:  A321268 A321269 A321270 * A321272 A321273 A321274 KEYWORD nonn AUTHOR Gus Wiseman, Nov 01 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 29 19:16 EDT 2020. Contains 338067 sequences. (Running on oeis4.)