login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A038003
Odd Catalan numbers: a(n) = A000108(2^n-1).
22
1, 1, 5, 429, 9694845, 14544636039226909, 94295850558771979787935384946380125, 11311095732253345760960290897769189975961199415637572612957718759342193629
OFFSET
0,3
COMMENTS
The next term has 150 digits. - Harvey P. Dale, Feb 22 2016
LINKS
David Wasserman, May 07 2007, Table of n, a(n) for n = 0..9
H-Y. Lin, Odd Catalan Numbers modulo 2^k, Integers 11 (2011) #A55
Eric Weisstein's World of Mathematics, Catalan Number
FORMULA
a(n) = binomial(2^(n+1)-2, 2^n-1)/(2^n).
a(n-1) = C(2^n,2^(n-1))/(2^n - 1)/2. - Benoit Cloitre, Aug 17 2002
a(n) = A000108(2^n-1). - David Wasserman, May 07 2007
MATHEMATICA
Select[CatalanNumber[Range[0, 300]], OddQ] (* Harvey P. Dale, Feb 22 2016 *)
PROG
(Python)
from __future__ import division
A038003_list, c, s = [1, 1], 1, 3
for n in range(2, 10**5+1):
....c = (c*(4*n-2))//(n+1)
....if n == s:
........A038003_list.append(c)
........s = 2*s+1 # Chai Wah Wu, Feb 12 2015
(PARI) a(n) = binomial(2^(n+1)-2, 2^n-1)/(2^n); \\ Joerg Arndt, Nov 05 2015
(Magma) [Binomial(2^(n+1)-2, 2^n-1)/(2^n): n in [0..10]]; // Vincenzo Librandi, Nov 01 2016
CROSSREFS
Intersection of A001790 and A098597. - Dimitri Papadopoulos, Oct 28 2016
Sequence in context: A147684 A199090 A218393 * A359992 A377724 A054332
KEYWORD
nonn
STATUS
approved