login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038003 Odd Catalan numbers; more precisely, A000108(2^n-1). 17
1, 1, 5, 429, 9694845, 14544636039226909, 94295850558771979787935384946380125, 11311095732253345760960290897769189975961199415637572612957718759342193629 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The next term has 150 digits. - Harvey P. Dale, Feb 22 2016

LINKS

David Wasserman, May 07 2007, Table of n, a(n) for n = 0..9

H-Y. Lin, Odd Catalan Numbers modulo 2^k, Integers 11 (2011) #A55

Eric Weisstein's World of Mathematics, Catalan Number

FORMULA

a(n) = binomial(2^(n+1)-2, 2^n-1)/(2^n).

a(n-1) = C(2^n,2^(n-1))/(2^n - 1)/2. - Benoit Cloitre, Aug 17 2002

a(n) = A000108(2^n-1). - David Wasserman, May 07 2007

MATHEMATICA

Select[CatalanNumber[Range[0, 300]], OddQ] (* Harvey P. Dale, Feb 22 2016 *)

PROG

(Python)

from __future__ import division

A038003_list, c, s = [1, 1], 1, 3

for n in range(2, 10**5+1):

....c = (c*(4*n-2))//(n+1)

....if n == s:

........A038003_list.append(c)

........s = 2*s+1 # Chai Wah Wu, Feb 12 2015

(PARI) a(n) = binomial(2^(n+1)-2, 2^n-1)/(2^n); \\ Joerg Arndt, Nov 05 2015

(MAGMA) [Binomial(2^(n+1)-2, 2^n-1)/(2^n): n in [0..10]]; // Vincenzo Librandi, Nov 01 2016

CROSSREFS

Cf. A000108, A094389, A119861, A119908, A120274, A120275.

Intersection of A001790 and A098597. - Dimitri Papadopoulos, Oct 28 2016

Sequence in context: A147684 A199090 A218393 * A054332 A145247 A317345

Adjacent sequences:  A038000 A038001 A038002 * A038004 A038005 A038006

KEYWORD

nonn

AUTHOR

Christian G. Bower

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 13:28 EDT 2018. Contains 313832 sequences. (Running on oeis4.)