OFFSET
1,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
N. J. A. Sloane, Transforms
FORMULA
EULER transform of {c(x)} where {c(x)} has g.f. B(x^2)/x = x+x^3+2*x^5+4*x^7+9*x^9+... and B(x) = x+x^2+2*x^3+4*x^4+9*x^5+... is g.f. for A000081.
MAPLE
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
end:
c:= proc(n) local r; `if`(irem(n, 2, 'r')=0, 0, b(r+1)) end:
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*c(d), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=1..50); # Alois P. Heinz, May 16 2013
MATHEMATICA
b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}])/(n-1)]; c[n_] := If[Mod[n, 2]==0, 0, b[n/2 // Ceiling]]; a[n_] := a[n] = If[n==0, 1, Sum[Sum[d*c[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved