login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038000 Number of forests of rooted trees where n dollars are spent and an n-node tree costs 2n-1 dollars. 2
1, 1, 2, 2, 4, 5, 9, 11, 21, 28, 50, 68, 123, 173, 310, 441, 789, 1147, 2044, 2999, 5351, 7938, 14143, 21138, 37686, 56729, 101144, 153085, 273077, 415407, 741301, 1132373, 2021831, 3100128, 5537782, 8519076, 15225373, 23491413, 42003748, 64979069, 116239502 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000

N. J. A. Sloane, Transforms

FORMULA

EULER transform of {c(x)} where {c(x)} has g.f. B(x^2)/x = x+x^3+2*x^5+4*x^7+9*x^9+... and B(x) = x+x^2+2*x^3+4*x^4+9*x^5+... is g.f. for A000081.

MAPLE

with(numtheory):

b:= proc(n) option remember; local d, j; `if`(n<=1, n,

      (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))

    end:

c:= proc(n) local r; `if`(irem(n, 2, 'r')=0, 0, b(r+1)) end:

a:= proc(n) option remember; `if`(n=0, 1,

      add(add(d*c(d), d=divisors(j))*a(n-j), j=1..n)/n)

    end:

seq(a(n), n=1..50);  # Alois P. Heinz, May 16 2013

MATHEMATICA

b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}])/(n-1)]; c[n_] := If[Mod[n, 2]==0, 0, b[n/2 // Ceiling]];  a[n_] := a[n] = If[n==0, 1, Sum[Sum[d*c[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 1, 50}] (* Jean-Fran├žois Alcover, Feb 19 2016, after Alois P. Heinz *)

CROSSREFS

Sequence in context: A144118 A187069 A089935 * A204856 A124280 A088518

Adjacent sequences:  A037997 A037998 A037999 * A038001 A038002 A038003

KEYWORD

nonn,easy

AUTHOR

Christian G. Bower

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 18:52 EDT 2018. Contains 316530 sequences. (Running on oeis4.)