login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A036431
a(n) = number of positive integers b which, when added to the number of their divisors, tau(b), gives n.
4
0, 1, 0, 1, 1, 0, 2, 0, 1, 1, 0, 2, 1, 1, 1, 0, 0, 2, 2, 0, 2, 0, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1, 1, 1, 0, 0, 1, 3, 2, 0, 0, 1, 2, 0, 2, 0, 0, 1, 1, 3, 1, 1, 0, 0, 2, 1, 0, 2, 1, 0, 2, 2, 1, 1, 0, 1, 0, 0, 3, 0, 1, 1, 2, 2, 1, 0, 0, 2, 0, 0, 3, 1, 0, 1, 1, 3, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 1, 2, 2, 0, 0, 1, 1, 1, 2
OFFSET
1,7
COMMENTS
Invented by the HR concept formation program.
LINKS
FORMULA
a(n) = |{b in N : b + tau(b) = n}|
EXAMPLE
a(7) = 2 because (i) 4+tau(4)=7 and (ii) 5+tau(5)=7.
MAPLE
N:= 200: # to get a(1)..a(N)
A:= Vector(N):
for b from 1 to N do
v:= b + numtheory:-tau(b);
if v <= N then A[v]:= A[v]+1 fi
od:
convert(A, list); # Robert Israel, Jun 10 2018
PROG
(PARI) a(n) = sum(i=1, n, i+numdiv(i) == n); \\ Michel Marcus, Oct 01 2021
CROSSREFS
Cf. A036432.
Sequence in context: A345927 A065359 A087372 * A029407 A259285 A099544
KEYWORD
nonn
AUTHOR
Simon Colton (simonco(AT)cs.york.ac.uk)
EXTENSIONS
a(87)=0 corrected by Michel Marcus, Aug 31 2013
STATUS
approved