login
a(n) = number of positive integers b which, when added to the number of their divisors, tau(b), gives n.
4

%I #22 Oct 01 2021 11:08:47

%S 0,1,0,1,1,0,2,0,1,1,0,2,1,1,1,0,0,2,2,0,2,0,0,1,2,2,0,1,0,1,2,1,1,1,

%T 0,0,1,3,2,0,0,1,2,0,2,0,0,1,1,3,1,1,0,0,2,1,0,2,1,0,2,2,1,1,0,1,0,0,

%U 3,0,1,1,2,2,1,0,0,2,0,0,3,1,0,1,1,3,0,0,1,2,2,0,0,0,1,2,1,2,2,0,0,1,1,1,2

%N a(n) = number of positive integers b which, when added to the number of their divisors, tau(b), gives n.

%C Invented by the HR concept formation program.

%H Robert Israel, <a href="/A036431/b036431.txt">Table of n, a(n) for n = 1..10000</a>

%H S. Colton, <a href="http://www.cs.uwaterloo.ca/journals/JIS/colton/joisol.html">Refactorable Numbers - A Machine Invention</a>, J. Integer Sequences, Vol. 2, 1999, #2.

%H S. Colton, <a href="http://web.archive.org/web/20070831060523/http://www.dai.ed.ac.uk/homes/simonco/research/hr/">HR - Automatic Theory Formation in Pure Mathematics</a>

%F a(n) = |{b in N : b + tau(b) = n}|

%e a(7) = 2 because (i) 4+tau(4)=7 and (ii) 5+tau(5)=7.

%p N:= 200: # to get a(1)..a(N)

%p A:= Vector(N):

%p for b from 1 to N do

%p v:= b + numtheory:-tau(b);

%p if v <= N then A[v]:= A[v]+1 fi

%p od:

%p convert(A,list); # _Robert Israel_, Jun 10 2018

%o (PARI) a(n) = sum(i=1, n, i+numdiv(i) == n); \\ _Michel Marcus_, Oct 01 2021

%Y Cf. A036432.

%K nonn

%O 1,7

%A Simon Colton (simonco(AT)cs.york.ac.uk)

%E a(87)=0 corrected by _Michel Marcus_, Aug 31 2013