login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036428 Square octagonal numbers. 4
1, 225, 43681, 8473921, 1643897025, 318907548961, 61866420601441, 12001766689130625, 2328280871270739841, 451674487259834398561, 87622522247536602581025, 16998317641534841066320321 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Also, numbers simultaneously octagonal and centered octagonal. - Steven Schlicker (schlicks(AT)gvsu.edu), Apr 24 2007

As n increases, this sequence is approximately geometric with common ratio r = lim(n -> Infinity, a(n)/a(n-1)) = ( 2 + sqrt(3))^4 = 97 + 56 * sqrt(3). - Ant King, Nov 15 2011

REFERENCES

S. Schlicker, Numbers Simultaneously Polygonal and Centered Polygonal, Math. Mag. 84 (5) (2011) 339.

LINKS

Table of n, a(n) for n=1..12.

C. Gill, solution to question no. 8, Mathematical Miscellany, 1 (1836), pp. 220-225, at p. 223.

Eric Weisstein's World of Mathematics, Octagonal Square Number.

Index to sequences with linear recurrences with constant coefficients, signature (195,-195,1).

FORMULA

Let x(n) + y(n)*sqrt(48) = (8+sqrt(48))*(7+sqrt(48))^n, s(n) = (y(n)+1)/2; then a(n) = (1/2)*(2+8*(s(n)^2-s(n))) - Steven Schlicker (schlicks(AT)gvsu.edu), Apr 24 2007

a(n+2)=194*a(n+1)-a(n)+32 and also a(n+1)=97*a(n)+56*(3*a(n)^2+a(n))^0.5. - Richard Choulet, Sep 26 2007

G.f.: x(x^2+30x+1)/((1-x)(1-194x+x^2)).

a(n)=-(1/6)+(7/12)*{[97-56*sqrt(3)]^n+[97+56*sqrt(3)]^n}-(1/3)*sqrt(3)*{[97-56*sqrt(3)]^n -[97+56*sqrt(3)]^n}, with n>=0 [From Paolo P. Lava, Nov 25 2008]

From Ant King, Nov 15 2011: (Start)

a(n) = 1/12 * ((2 + sqrt(3)) ^ (4n-2) + (2 - sqrt(3)) ^ (4n-2) - 2).

a(n) = floor (1/12 * (2 + sqrt(3)) ^ (4n-2)).

a(n) = 1/12 * ( (tan(5*pi/12)) ^ (4n-2) + (tan(pi/12)) ^ (4n-2) -2).

a(n) = floor (1/12 * tan(5*pi/12) ^ (4n-2)).

(End)

MAPLE

A036428 := proc(n)

        option remember;

        if n < 4 then

                op(n, [1, 225, 43681]) ;

        else

                195*(procname(n-1)-procname(n-2))+procname(n-3) ;

        end if;

end proc: # R. J. Mathar, Nov 11 2011

MATHEMATICA

LinearRecurrence[{195, -195, 1}, {1, 225, 43681}, 12] (* Ant King, Nov 15 2011 *)

CROSSREFS

Cf. A000567, A016754.

Cf. A006060, A006051, A028230, A046184.

Sequence in context: A051364 A192934 A061051 * A183822 A171109 A239478

Adjacent sequences:  A036425 A036426 A036427 * A036429 A036430 A036431

KEYWORD

nonn,easy

AUTHOR

Jean-Francois Chariot (jean-francois.chariot(AT)afoc.alcatel.fr)

EXTENSIONS

More terms from Eric W. Weisstein

Edited by N. J. A. Sloane, Oct 02 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 23 17:23 EST 2014. Contains 249851 sequences.