This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035506 Stolarsky array read by antidiagonals. 52
 1, 2, 4, 3, 6, 7, 5, 10, 11, 9, 8, 16, 18, 15, 12, 13, 26, 29, 24, 19, 14, 21, 42, 47, 39, 31, 23, 17, 34, 68, 76, 63, 50, 37, 28, 20, 55, 110, 123, 102, 81, 60, 45, 32, 22, 89, 178, 199, 165, 131, 97, 73, 52, 36, 25, 144, 288, 322, 267, 212, 157, 118, 84, 58, 40, 27, 233, 466, 521, 432, 343, 254, 191, 136, 94, 65, 44, 30 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Inverse of sequence A064357 considered as a permutation of the positive integers. - Howard A. Landman, Sep 25 2001 PARI-GP script gives general solution for the Stolarsky array in square array form by row,column. Increase the default precision to compute large values in the array. - Randall L. Rathbun (randallr(AT)abac.com), Jan 25 2002 The Stolarsky array is the dispersion of the sequence s given by s(n)=(integer nearest n*x), where x=(golden ratio).  For a discussion of dispersions, see A191426. See A098861 for the row in which is a given number. - M. F. Hasler, Nov 05 2014 REFERENCES C. Kimberling, "Stolarsky interspersions," Ars Combinatoria 39 (1995) 129-138. LINKS Alois P. Heinz, Antidiagonals n = 0..140, flattened C. Kimberling, Interspersions Clark Kimberling, Interspersions and dispersions, Proceedings of the American Mathematical Society, 117 (1993) 313-321. N. J. A. Sloane, Classic Sequences Eric Weisstein's World of Mathematics, Stolarsky arrays FORMULA T(1,k) = 2*T(0,k+1); T(3,k) = 3*T(0,k+2). - M. F. Hasler, Nov 05 2014 EXAMPLE Top left corner of the array is:    1    2    3    5    8   13   21   34   55    4    6   10   16   26   42   68  110  178    7   11   18   29   47   76  123  119  322    9   15   24   39   63  102  165  267  432   12   19   31   50   81  131  212  343  555   14   23   37   60   97  157  254  411  665 MAPLE A:= proc(n, k) local t, a, b; t:= (1+sqrt(5))/2; a:= floor(n*(t+1)+1 +t/2); b:= round(a*t); (Matrix([[b, a]]). Matrix([[1, 1], [1, 0]])^k) [1, 2] end: seq(seq(A (n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Aug 17 2008 MATHEMATICA (* program generates the dispersion array T of the complement of increasing sequence f[n] *) r = 40; r1 = 12; (* r=# rows of T, r1=# rows to show *) c = 40; c1 = 12; (* c=# cols of T, c1=# cols to show *) x = GoldenRatio; f[n_] := Floor[n*x + 1/2] (* f(n) is complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* t=Stolarsky array, A035506 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* Stolarsky array as a sequence *) (* Program by Peter J. C. Moses, Jun 01 2011 *) PROG (PARI) {Stolarsky(r, c)= tau=(1+sqrt(5))/2; a=floor(r*(1+tau)-tau/2); b=round(a*tau); if(c==1, a, if(c==2, b, for(i=1, c-2, d=a+b; a=b; b=d; ); d))} CROSSREFS Cf. A035513 (Wythoff array), A035507 (inverse Stolarksy array), A191426. Sequence in context: A194030 A083044 A126714 * A246368 A316963 A006016 Adjacent sequences:  A035503 A035504 A035505 * A035507 A035508 A035509 KEYWORD nonn,tabl,easy,nice AUTHOR EXTENSIONS More terms from Larry Reeves (larryr(AT)acm.org), Sep 27 2000 Extended (terms, Mathematica, example) by Clark Kimberling, Jun 03 2011 Example corrected by M. F. Hasler, Nov 05 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 16 08:42 EST 2018. Contains 318158 sequences. (Running on oeis4.)