This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A126714 Dual Wythoff array read along antidiagonals. 4
 1, 2, 4, 3, 6, 7, 5, 10, 11, 9, 8, 16, 18, 14, 12, 13, 26, 29, 23, 19, 15, 21, 42, 47, 37, 31, 24, 17, 34, 68, 76, 60, 50, 39, 27, 20, 55, 110, 123, 97, 81, 63, 44, 32, 22, 89, 178, 199, 157, 131, 102, 71, 52, 35, 25, 144, 288, 322, 254, 212, 165, 115, 84, 57, 40, 28 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The dual Wythoff array is the dispersion of the sequence w given by w(n)=2+floor(n*x), where x=(golden ratio), so that w=2+A000201(n).  For a discussion of dispersions, see A191426. - _Clark Kimberling, Jun 03 2011 REFERENCES P. Hegarty, U. Larsson, Permutations of the natural numbers with prescribed difference multisets, Electr. J. Combin. Numb. Theory 6 (2006) #A03 Clark Kimberling, "Stolarsky Interspersions," Ars Combinatoria 39 (1995) 129-138. See page 135 for the dual Wythoff array and other dual arrays. [From Clark Kimberling, Oct 29 2009] LINKS EXAMPLE Array starts 1 2 3 5 8 13 21 34 55 89 144 4 6 10 16 26 42 68 110 178 288 466 7 11 18 29 47 76 123 199 322 521 843 9 14 23 37 60 97 157 254 411 665 1076 12 19 31 50 81 131 212 343 555 898 1453 15 24 39 63 102 165 267 432 699 1131 1830 17 27 44 71 115 186 301 487 788 1275 2063 20 32 52 84 136 220 356 576 932 1508 2440 22 35 57 92 149 241 390 631 1021 1652 2673 25 40 65 105 170 275 445 720 1165 1885 3050 28 45 73 118 191 309 500 809 1309 2118 3427 MAPLE Tn1 := proc(T, nmax, row) local n, r, c, fnd; n := 1; while true do fnd := false; for r from 1 to row do for c from 1 to nmax do if T[r, c] = n then fnd := true; fi; od; if T[r, nmax] < n then RETURN(-1); fi; od; if fnd then n := n+1; else RETURN(n); fi; od; end; Tn2 := proc(T, nmax, row, ai1) local n, r, c, fnd; for r from 1 to row do for c from 1 to nmax do if T[r, c]+1 = ai1 then RETURN(T[r, c+1]+1); fi; od; od; RETURN(-1); end; T := proc(nmax) local a, col, row; a := array(1..nmax, 1..nmax); for col from 1 to nmax do a[1, col] := combinat[fibonacci](col+1); od; for row from 2 to nmax do a[row, 1] := Tn1(a, nmax, row-1); a[row, 2] := Tn2(a, nmax, row-1, a[row, 1]); for col from 3 to nmax do a[row, col] := a[row, col-2]+a[row, col-1]; od; od; RETURN(a); end; nmax := 12; a := T(nmax); for d from 1 to nmax do for row from 1 to d do printf("%d, ", a[row, d-row+1]); od; od; MATHEMATICA (* program generates the dispersion array T of the complement of increasing sequence f[n] *) r = 40; r1 = 12;  (* r=# rows of T, r1=# rows to show *) c = 40; c1 = 12;   (* c=# cols of T, c1=# cols to show *) x = GoldenRatio; f[n_] := Floor[n*x + 2] (* f(n) is complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]];  (* the array T *) TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* Dual Wythoff array, A126714 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* array as a sequence *) (* Program by Peter J. C. Moses, Jun 01 2011; added here by Clark Kimberling, Jun 03 2011 *) CROSSREFS First three rows identical to A035506. First column is A007066. First row is A000045. 2nd row is essentially A006355. 3rd row is essentially A000032. 4th row essentially A000285. 5th row essentially A013655 or A001060. 6th row essentially A022086 or A097135. 7th row essentially A022120. 8th row essentially A022087. 9th row essentially A022130. 10th row essentially A022088. 11th row essentially A022095. 12th row essentially A022089 etc. Cf. A035513 (Wythoff array). Sequence in context: A083050 A194030 A083044 * A035506 A246368 A316963 Adjacent sequences:  A126711 A126712 A126713 * A126715 A126716 A126717 KEYWORD easy,nonn,tabl AUTHOR R. J. Mathar, Feb 12 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 22:21 EDT 2019. Contains 328134 sequences. (Running on oeis4.)