This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035090 Non-palindromic squares which when written backwards remain square (and still have the same number of digits). 7
 144, 169, 441, 961, 1089, 9801, 10404, 10609, 12544, 12769, 14884, 40401, 44521, 48841, 90601, 96721, 1004004, 1006009, 1022121, 1024144, 1026169, 1042441, 1044484, 1062961, 1212201, 1214404, 1216609, 1236544, 1238769, 1256641 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Squares with trailing zeros not included. Sequence is infinite, since it includes e.g. 10^(2k)+4*10^k+4 for all k. - Robert Israel, Sep 20 2015 LINKS Robert Israel, Table of n, a(n) for n = 1..798 P. De Geest, Palindromic Squares FORMULA a(n) = A035123(n)^2. - R. J. Mathar, Jan 25 2017 MAPLE rev:= proc(n) local L, i; L:= convert(n, base, 10); add(L[-i]*10^(i-1), i=1..nops(L)) end proc: filter:= proc(n) local t;   if n mod 10 = 0 then return false fi;   t:= rev(n); t <> n and issqr(t) end proc: select(filter, [seq(n^2, n=1..10^5)]); # Robert Israel, Sep 20 2015 CROSSREFS Reversing a polytopal number gives a polytopal number: cube to cube: A035123, A035124, A035125, A002781; square to square: A161902, A035090, A033294, A106323, A106324, A002779; square to triangular: A181412, A066702; tetrahedral to tetrahedral: A006030; triangular to square: A066703, A179889; triangular to triangular: A066528, A069673, A003098, A066569. Sequence in context: A085426 A034289 A062917 * A064021 A156316 A245214 Adjacent sequences:  A035087 A035088 A035089 * A035091 A035092 A035093 KEYWORD nonn,base AUTHOR Patrick De Geest, Nov 15 1998 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.