|
|
A035089
|
|
Smallest prime of form 2^n*k+1.
|
|
9
|
|
|
2, 3, 5, 17, 17, 97, 193, 257, 257, 7681, 12289, 12289, 12289, 40961, 65537, 65537, 65537, 786433, 786433, 5767169, 7340033, 23068673, 104857601, 167772161, 167772161, 167772161, 469762049, 2013265921, 3221225473, 3221225473
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Table of n, a(n) for n=0..29.
|
|
MATHEMATICA
|
a = {}; Do[k = 0; While[ !PrimeQ[k 2^n + 1], k++ ]; AppendTo[a, k 2^n + 1], {n, 1, 50}]; a (* Artur Jasinski *)
|
|
PROG
|
(PARI) a(n)=for(k=1, 9e99, if(ispseudoprime(k<<n+1), return(k<<n+1))) \\ Charles R Greathouse IV, Jul 06 2011
|
|
CROSSREFS
|
Analogous case is A034694. Fermat primes (A019434) are a subset. See also Fermat numbers A000215.
Cf. A007522, A057775, A127575, A127576, A127577, A127578, A127580, A127581, A087522, A127586, A127587.
Sequence in context: A048112 A001042 A214697 * A045313 A321910 A045314
Adjacent sequences: A035086 A035087 A035088 * A035090 A035091 A035092
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Labos Elemer
|
|
EXTENSIONS
|
a(0) from Joerg Arndt, Jul 06 2011
|
|
STATUS
|
approved
|
|
|
|