login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035088
Number of labeled polygonal cacti (Husimi graphs) with n nodes.
4
1, 1, 0, 1, 3, 27, 240, 2985, 42840, 731745, 14243040, 313570845, 7683984000, 207685374435, 6135743053440, 196754537704725, 6805907485977600, 252620143716765825, 10015402456976716800, 422410127508300756825, 18884777200534941696000
OFFSET
0,5
COMMENTS
A Husimi tree is a connected graph in which no line lies on more than one cycle [Harary, 1953]. - Jonathan Vos Post, Mar 12 2010
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 301.
F. Harary and R. Z. Norman "The Dissimilarity Characteristic of Husimi Trees" Annals of Mathematics, 58 1953, pp. 134-141.
F. Harary and E. M. Palmer, Graphical Enumeration, p. 71.
F. Harary and G. E. Uhlenbeck "On the Number of Husimi Trees" Proc. Nat. Acad. Sci. USA vol. 39. pp. 315-322, 1953.
F. Harary, G. Uhlenbeck (1953), "On the number of Husimi trees, I", Proceedings of the National Academy of Sciences 39: 315-322. - From Jonathan Vos Post, Mar 12 2010
FORMULA
a(n) = A035087(n)/n, n > 0.
MATHEMATICA
max = 20; s = 1+InverseSeries[Series[E^(x^2/(2*(x-1)))*x, {x, 0, max}], x]; a[n_] := SeriesCoefficient[s, n]*(n-1)!; a[0]=1; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Feb 27 2016, after Vaclav Kotesovec at A035087 *)
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Christian G. Bower, Nov 15 1998
STATUS
approved