

A034174


a(n) is minimal such that prime factorizations of a(n)n+1, ..., a(n) have same exponents.


7




OFFSET

1,2


COMMENTS

The final terms of the arithmetic progressions defined in A083785.  N. J. A. Sloane, Oct 18 2007
a(8) > 10^13.  Donovan Johnson, Oct 20 2009. [See Reble link for an upper limit.]
The main entry is A034173, which should be updated whenever something relevant is added here.  M. F. Hasler, Oct 28 2012


LINKS

Table of n, a(n) for n=1..7.
Don Reble, a(8) < 1.9*10^42, SeqFan list, Oct 23 2012
Index entries for sequences related to primes in arithmetic progressions


FORMULA

a(n) = A034173(n) + n  1.  Max Alekseyev, Nov 10 2009


EXAMPLE

a(4)=19943 because 19940, ..., 19943 all have the form p^2 q r.


PROG

(PARI) A034174(n)={my(f); for(k=n, 9e9, f=0; for(i=0, n1, f==(f=vecsort(factor(ki)[, 2]))  !i  [k+=ni1; next(2)]); return(k))} \\ For illustrative purpose; not useful for n>=6.  M. F. Hasler, Oct 28 2012


CROSSREFS

Diagonal of A083785. Cf. A034173, A083785, A083787. See A034173 for more.
Sequence in context: A069954 A134098 A132513 * A231831 A119526 A112404
Adjacent sequences: A034171 A034172 A034173 * A034175 A034176 A034177


KEYWORD

hard,nonn,more


AUTHOR

Dean Hickerson, Oct 01 1998


EXTENSIONS

a(7) from Donovan Johnson, Oct 20 2009


STATUS

approved



