This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134098 a(n) = 2^[n(n+1) - A000120(n)] * [x^n] (1+x)^(1/2^n) for n>=0, where A000120(n) = number of 1's in binary expansion of n. 2
 1, 1, -3, 35, -7285, 1570863, -2762459931, 9861642254451, -1141290059372782605, 66806775363324062981915, -31603810290612531279241668449, 30166547730607848261858185370275389, -464256425980552239880944863449968127087425 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS [x^n] (1+x)^(1/2^n) denotes the coefficient of x^n in the (2^n)-root of (1+x), which has a denominator equal to 2^[n(n+1) - A000120(n)]. LINKS EXAMPLE This sequence forms the numerators of coefficients [x^n] (1+x)^(1/2^n), where the denominators equal 2^b(n) and b(n) takes on values: [0,1,5,10,19,28,40,53,71,88,108,129,154,179,207,236,271,304,...], which is described by b(n) = n(n+1) - A000120(n) for n>=0. PROG (PARI) {a(n)=polcoeff((1+x+x*O(x^n))^(1/2^n), n)*2^(n*(n+1)-subst(Pol(binary(n)), x, 1))} CROSSREFS Cf. A000120; A134097 (variant); A134096. Sequence in context: A068002 A132557 A069954 * A132513 A034174 A119526 Adjacent sequences:  A134095 A134096 A134097 * A134099 A134100 A134101 KEYWORD sign AUTHOR Paul D. Hanna, Oct 26 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .