login
A034173
a(n) is minimal such that prime factorizations of a(n), ..., a(n)+n-1 have same exponents.
13
1, 2, 33, 19940, 204323, 380480345, 440738966073
OFFSET
1,2
COMMENTS
a(8) > 10^13. - Donovan Johnson, Oct 20 2009
Don Reble has shown that a(8) < 1.9*10^42, cf. link.
From David Wasserman, Jan 05 2019: (Start)
a(8) <= 108111092880293127811946663766147737122,
a(9) <= 6850672946809600696044301071559918192380244,
a(10) <= 96037988156124494415303285590850571857698741869620,
a(11) <= 9044737840075556371215937303485030235666252755947862558252154847122. (End)
LINKS
Don Reble, A034173(8) exists, SeqFan list, Oct 23 2012
FORMULA
a(n) = A034174(n) - n + 1. - Max Alekseyev, Nov 10 2009
a(n) = A083785(n,1) = A113456(1,n); a(2) = A052213(1), a(3) = A052214(1), a(4) = A175590(1), a(5) = A218448(1), a(6) = A218448(62) = A218448(63)-1. - M. F. Hasler, Oct 28 2012
EXAMPLE
a(4) = 19940 because 19940, ..., 19943 all have the form p^2 q r.
PROG
(PARI) A034173(n)={my(f); for(k=1, 9e9, f=0; for(i=1, n, f==(f=vecsort(factor(k+n-i)[, 2])) || i==1 || [k+=n-i; next(2)]); return(k))} \\ M. F. Hasler, Oct 23 2012
CROSSREFS
Cf. A034174.
Cf. A052213, A052214, A175590, A218448. This sequence is the first column of A083785 and first row of A113456. The latter generalizes to arithmetic progressions with step d>=1. - M. F. Hasler, Oct 28 2012
Sequence in context: A269632 A083459 A368899 * A132519 A117969 A003820
KEYWORD
hard,nonn,more
AUTHOR
Dean Hickerson, Oct 01 1998
EXTENSIONS
a(7) from Donovan Johnson, Oct 20 2009
Don Reble link repaired by N. J. A. Sloane, Oct 24 2024
STATUS
approved