login
A052213
Numbers k with prime signature(k) = prime signature(k+1).
19
2, 14, 21, 33, 34, 38, 44, 57, 75, 85, 86, 93, 94, 98, 116, 118, 122, 133, 135, 141, 142, 145, 147, 158, 171, 177, 201, 202, 205, 213, 214, 217, 218, 230, 244, 253, 285, 296, 298, 301, 302, 326, 332, 334, 375, 381, 387, 393, 394, 429, 434, 445, 446, 453, 481
OFFSET
1,1
COMMENTS
This sequence is infinite, see A189982 and Theorem 4 in Goldston-Graham-Pintz-Yıldırım. - Charles R Greathouse IV, Jul 17 2015
This is a subsequence of A005237, hence a(n) >> n sqrt(log log n) by the Erdős-Pomerance-Sárközy result cited there. - Charles R Greathouse IV, Jul 17 2015
Sequence is not the same as A280074, first deviation is at a(212): a(212) = 2041, A280074(212) = 2024. Number 2024 is the smallest number n such that A007425(n) = A007425(n+1) with different prime signatures of numbers n and n+1 (2024 = 2^3 * 11 * 23, 2025 = 3^4 * 5^2; A007425(2024) = A007425(2025) = 90). Conjecture: also numbers n such that Product_{d|n} tau(d) = Product_{d|n+1} tau(d). - Jaroslav Krizek, Dec 25 2016
LINKS
D. A. Goldston, S. W. Graham, J. Pintz, and C. Y. Yıldırım, Small gaps between almost primes, the parity problem, and some conjectures of Erdos on consecutive integers, arXiv:0803.2636 [math.NT], 2008.
Eric Weisstein's MathWorld, Prime Signature
Wikipedia, Prime signature
EXAMPLE
14 = 2^1*7^1 and 15 = 3^1*5^1, so both have prime signature {1,1}. Thus, 14 is a term.
MATHEMATICA
pri[n_] := Sort[ Transpose[ FactorInteger[n]] [[2]]]; Select[ Range[ 2, 1000], pri[#] == pri[#+1] &]
Rest[SequencePosition[Table[Sort[FactorInteger[n][[All, 2]]], {n, 500}], {x_, x_}][[All, 1]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 28 2017 *)
PROG
(PARI) lista(nn) = for (n=1, nn-1, if (vecsort(factor(n)[, 2]) == vecsort(factor(n+1)[, 2]), print1(n, ", ")); ); \\ Michel Marcus, Jun 10 2015
(Python)
from sympy import factorint
def aupto(limit):
alst, prevsig = [], [1]
for k in range(3, limit+2):
sig = sorted(factorint(k).values())
if sig == prevsig: alst.append(k - 1)
prevsig = sig
return alst
print(aupto(250)) # Michael S. Branicky, Sep 20 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Erich Friedman, Jan 29 2000
STATUS
approved