login
A033473
Numerator of (2*n+1)!*8*Bernoulli(2*n,1/2).
4
8, -4, 28, -930, 96012, -24144750, 12602990070, -12203470904625, 20180112406353900, -53495387545025175750, 216267236072968468547250, -1280630367874799320798794375, 10743714652441927865738713818750, -124178158916511109662405449217796875
OFFSET
0,1
COMMENTS
As R. Israel remarks, the expression (2*n+1)!*8*Bernoulli(2*n,1/2) is no longer an integer for n = 15, 23, 27, 29, 30, 31, 39, 43, 45, 46, 47,... - M. F. Hasler, Feb 16 2014
Denominators are in A238015. See A238163 for the rounded values and A238164 for another maybe more interesting variant. - M. F. Hasler, Mar 01 2014
MATHEMATICA
a[n_] := Numerator[ (2 n + 1)! 8 BernoulliB[2 n, 1/2]]; Array[a, 14, 0] (* Robert G. Wilson v, Feb 17 2014, edited by M. F. Hasler, Mar 01 2014 *)
Table[Numerator[(2 n + 1)! 8 BernoulliB[2 n, 1/2]], {n, 0, 20}] (* Vincenzo Librandi, Feb 18 2014 *)
PROG
(PARI) A033473 = n->numerator((2*n+1)!*8*subst(bernpol(2*n, x), x, 1/2)) \\ M. F. Hasler, Feb 16-18 2014
CROSSREFS
Sequence in context: A143368 A160415 A160411 * A238163 A213773 A213178
KEYWORD
sign
EXTENSIONS
Definition changed by M. F. Hasler, Feb 16 2014
Further edits by M. F. Hasler, Mar 01 2014
STATUS
approved