login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213773
Rectangular array: (row n) = b**c, where b(h) = 3*h-2, c(h) = 3*n-5+3*h, n>=1, h>=1, and ** = convolution.
4
1, 8, 4, 30, 23, 7, 76, 66, 38, 10, 155, 142, 102, 53, 13, 276, 260, 208, 138, 68, 16, 448, 429, 365, 274, 174, 83, 19, 680, 658, 582, 470, 340, 210, 98, 22, 981, 956, 868, 735, 575, 406, 246, 113, 25, 1360, 1332, 1232, 1078
OFFSET
1,2
COMMENTS
Principal diagonal: A213782
Antidiagonal sums: A214092
Row 1, (1,4,7,10,…)**(1,4,7,10,…): A100175
Row 2, (1,4,7,10,…)**(4,7,10,13,…): (3*k^3 + 6*k^2 - k)/2
Row 3, (1,4,7,10,…)**(7,10,13,16,…): (3*k^3 + 15*k^2 - 4*k)/2
For a guide to related arrays, see A212500.
LINKS
FORMULA
T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x(3*n-2 + (3*n+1)*x - (6*n-10)*x^2) and g(x) = (1-x)^4.
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
1....8....30....76....155...276
4....23...66....142...260...429
7....38...102...208...365...582
10...53...138...274...470...735
13...68...174...340...575...888
MATHEMATICA
b[n_]:=3n-2; c[n_]:=3n-2;
t[n_, k_]:=Sum[b[k-i]c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:=Table[t[n, k], {k, 1, 60}] (* A213773 *)
Table[t[n, n], {n, 1, 40}] (* A214092 *)
s[n_]:=Sum[t[i, n+1-i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213818 *)
CROSSREFS
Cf. A213500.
Sequence in context: A160411 A033473 A238163 * A213178 A082682 A279635
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Jul 04 2012
STATUS
approved