login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033472
Number of n-vertex labeled graphs that are gracefully labeled trees.
6
1, 1, 2, 4, 12, 40, 164, 752, 4020, 23576, 155632, 1112032, 8733628, 73547332, 670789524, 6502948232, 67540932632, 740949762580, 8634364751264, 105722215202120, 1366258578159064, 18468456090865364, 262118487952306820
OFFSET
1,3
COMMENTS
A graph with n edges is graceful if its vertices can be labeled with distinct integers in the range 0,1,...,n in such a way that when the edges are labeled with the absolute differences between the labels of their end-vertices, the n edges have the distinct labels 1,2,...,n.
The PARI/GP program below uses the Matrix-Tree Theorem and sums over {1,-1} vectors to isolate the multilinear term. It takes time 2^n * n^O(1) to compute graceful_tree_count(n). - Noam D. Elkies, Nov 18 2002
Noam D. Elkies and I have independently verified the existing terms and computed more, up to a(31). - Don Knuth, Feb 09 2021
REFERENCES
A. Kotzig, Recent results and open problems in graceful graphs, Congressus Numerantium, 44 (1984), 197-219 (esp. 200, 204).
LINKS
FORMULA
a(n) = 2 * A337274(n) for n >= 3. - Hugo Pfoertner, Oct 05 2020
EXAMPLE
For n=3 we have 1-3-2 and 2-1-3, so a(3)=2.
PROG
(PARI) { treedet(v, n) = n=length(v); matdet(matrix(n, n, i, j, if(i-j, -v[abs(i-j)], sum(m=1, n+1, if(i-m, v[abs(i-m)], 0))))) }
{ graceful_tree_count(n, s, v, v1, v0)= if(n==1, 1, s=0; v1=vector(n-1, m, 1); v0=vector(n-1, m, if(m==1, 1, 0)); for(m=2^(n-2), 2^(n-1)-1, v= binary(m) - v0; s = s + (-1)^(v*v1~) * treedet(v1-2*v) ); s/2^(n-2) ) } \\ Noam D. Elkies, Nov 18 2002
for(n=1, 18, print1(graceful_tree_count(n), ", ")) \\ Example of function call
CROSSREFS
Sequence in context: A215070 A188479 A062962 * A134983 A330679 A342225
KEYWORD
nonn
STATUS
approved