|
|
A033306
|
|
Triangle of coefficients of ordered cycle-index polynomials: T(n,k) = binomial(n,k)*Bell(k)*Bell(n-k).
|
|
5
|
|
|
1, 1, 1, 2, 2, 2, 5, 6, 6, 5, 15, 20, 24, 20, 15, 52, 75, 100, 100, 75, 52, 203, 312, 450, 500, 450, 312, 203, 877, 1421, 2184, 2625, 2625, 2184, 1421, 877, 4140, 7016, 11368, 14560, 15750, 14560, 11368, 7016, 4140, 21147, 37260, 63144, 85260, 98280, 98280, 85260, 63144, 37260, 21147
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
REFERENCES
|
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 80.
|
|
LINKS
|
Table of n, a(n) for n=0..54.
|
|
FORMULA
|
E.g.f.: exp(exp(x*y)+exp(x)-2).
|
|
EXAMPLE
|
1;
1, 1;
2, 2, 2;
5, 6, 6, 5;
15, 20, 24, 20, 15;
52, 75, 100, 100, 75, 52;
...
|
|
MAPLE
|
A033306 := proc(n, k)
if k < 0 or k > n then
0;
else
binomial(n, k)*combinat[bell](k)*combinat[bell](n-k) ;
end if;
end proc: # R. J. Mathar, Mar 21 2013
# second Maple program:
b:= proc(n) option remember; expand(`if`(n>0, add(
(x^j+1)*b(n-j)*binomial(n-1, j-1), j=1..n), 1))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
seq(T(n), n=0..10); # Alois P. Heinz, Aug 30 2019
|
|
MATHEMATICA
|
t[n_, k_] := Binomial[n, k] * BellB[k] * BellB[n-k]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
|
|
CROSSREFS
|
Cf. A000110, row sums give A001861.
Columns include A000110 and A052889.
Sequence in context: A066835 A123953 A097006 * A136347 A279515 A260338
Adjacent sequences: A033303 A033304 A033305 * A033307 A033308 A033309
|
|
KEYWORD
|
nonn,tabl,easy
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
EXTENSIONS
|
Edited by Vladeta Jovovic, Sep 17 2003
|
|
STATUS
|
approved
|
|
|
|